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1 Introduction

Economic intuition suggests that buyers and sellers are often complements in two-sided alloca-

tion problems, just as factor inputs may be complements in production functions: Adding an

additional buyer to an allocation problem generates a larger increase in social value when an

additional seller is present than when he is not and, similarly, adding an additional seller to

an allocation problem generates a larger increase in social value when an additional buyer is

present than when he is not. The complementarity of buyers and sellers is clear in all bilateral

trade settings because there is no surplus without both the buyer and the seller present. As

we show, this complementarity also holds in all settings in which trade is one-to-one, as well

as in a general class of many-to-many allocation problems.

The fact that buyers and sellers may be complements in a broad set of two-sided allocation

problems turns out to have important consequences for the social choice functions that can

be implemented by a mechanism designer in settings in which agents have private information

and their individual rationality constraints must be respected. A key insight from the Vickrey-

Clarke-Groves (VCG) mechanism and the literature on dominant strategy implementation is

that truthful revelation of private information is possible if and only if each agent receives his

social marginal product as a transfer (plus a constant).1 Because the market maker can extract

only the social welfare of an allocation but must pay each agent his social marginal product

to reveal his information, efficient trade is impossible without running a deficit when the sum

of the social marginal products exceeds social welfare. In settings such as the bilateral trade

problem studied in Myerson and Satterthwaite (1983), where the buyer’s and seller’s types have

overlapping support, the impossibility of efficient trade occurs precisely because the buyer and

seller are complements.

In this paper, we ask whether complementarities between buyers and sellers might be used

more broadly to characterize problems for which efficient trade is impossible. We show that

for a general class of two-sided allocation problems – those that we call matching problems –

buyers and sellers are complements and efficient trade is impossible. Importantly, the test to

determine whether an allocation problem is a matching problem can be done at the level of the

1As is well-known, the VCG-mechanism is an efficient mechanism that endows agents with dominant strate-
gies. It is due to the independent contributions of Vickrey (1961), Clarke (1971), and Groves (1973). The richness
of the environment in Groves (1973) does not permit dominant strategies, but the mechanism developed there
endows agents with such strategies in simpler environments such as the ones studied in Groves and Loeb (1975)
or here.
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individual agents, which allows us to unify much of the existing literature on the impossibility

of efficient trade.

As a building block towards characterizing matching problems, we begin our paper by

showing that a result due to Shapley (1962) in assignment games implies that buyers and sellers

are complements in one-to-one allocation problems – allocation problems in which, although

there may be multiple buyers and sellers, each agent from one side of the market trades with at

most one agent from the other side. Using this insight and the fact that when trade is pairwise,

welfare can be calculated by adding up the marginal contributions of the trading pairs, we

first show the impossibility of efficient trade for all two-sided allocation problems in which the

optimal matchings between buyers and sellers are one-to-one.2

Determining when buyers and sellers are complements in more general settings is compli-

cated by the fact that complementarity is a pairwise property while trade may be done in

larger groups. This creates a number of issues. First, even if every buyer and every seller are

complements to each other, groups of buyers and sellers who trade with each other can still be

substitutes. Second, when trade is not done in pairs, it is not clear how to add up the marginal

contributions across agents.

Our approach to these challenges consists of imposing conditions on the underlying eco-

nomic allocation problem with many-to-many trades (or matchings) that allow us to represent

the problem as one with only pairwise trades. Following Ostrovsky and Paes Leme (2015), we

call the condition on the agents’ payoff functions that permits this representation decompos-

ability. Under this condition, each agent can be decomposed into unit constituents who

each demand (or supply) one object only.3 We show that the underlying economic allocation

problem can be represented as an assignment game if and only if each agent’s payoff function is

decomposable. We call such allocation problems matching problems. Extending the results

of Shapley (1962) to setups in which sets of buyers and sellers – the unit constituents of the

true buyers and sellers – are considered, we then show that efficient trade is impossible in any

matching problem.

Homogeneous goods and additive payoffs are but two simple examples of two-sided al-

2Loertscher, Marx, and Wilkening (2015) invoke Shapley’s (1962) theorem to prove the impossibility of trade
in one-to-one allocation problems with homogeneous objects. Among other things, we extend this to all matching
problems with transfers without any restriction on the nature of the objects that are traded.

3Decomposability applies if each agent’s payoff function can be derived as the solution to an assignment
game between unit constituents of that agent and objects. Agents are decomposable if and only if their payoff
functions are “assignment valuations” as defined by Hatfield and Milgrom (2005).
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location problems that are matching problems. Although efficient trades are generally not

one-to-one with homogeneous goods, multi-unit demands, and multi-unit capacities, one can

decompose every agent into unit constituents of himself with unit-demand or unit-supply in

such a way that the efficient allocation can be represented as a matching between unit con-

stituents and objects. Viewed from this angle, our results thus provide the unifying and, to our

knowledge, novel insight that the underlying force behind the impossibility of efficient trade in

the two-sided allocation problems of Vickrey (1961), Myerson and Satterthwaite (1983), Gresik

and Satterthwaite (1989), and McAfee (1992) is that these are matchings problems. Of course,

our results also imply that efficient trade with privately informed agents is impossible in the

assignment game of Shapley and Shubik (1972), which is popular in the literature on matching

with transfers but has received relatively little attention from the mechanism design literature.

Allocation problems that are matching problems include all problems with unit demands

and unit supplies, the homogeneous good model with multi-unit traders, models with additive

payoffs, a version of Ausubel’s (2006) heterogeneous commodities model with additively sepa-

rable payoff functions, and any problems involving a mixture of agents with payoff functions

of these forms. We unify these models by showing that buyers’ and sellers’ payoff functions in

each of these models exhibit rank-dependent discounts and that any model in which agents’

payoff functions have this form is a matching problem.

This paper combines two strands of literature: matching with transfers and the Bayesian

mechanism design literature with two-sided private information. Initiated by Koopmans and

Beckmann (1957), Shapley (1962), and Shapley and Shubik (1972) with recent contributions by,

among others, Bikhchandani and Ostroy (2002), Echenique, Lee, Shum, and Yenmez (2013),

Chambers and Echenique (2015), and Choo (forthcoming), the literature on matching with

transfers has, beyond concerns of stability and its relation to the core, paid limited attention to

individuals’ incentives to reveal what is plausibly their private information. We show that it is

impossible to elicit such information without running a deficit if there are least efficient types

on both sides of the market that never trade.4 From a modeling perspective, our paper extends

the package assignment model of Bikhchandani and Ostroy (2002) by introducing heterogeneity

on the sellers’ side.5 Although the settings differ, the impossibility of efficient trade in two-sided

4As Shapley and Shubik (1972) show, the core of an assignment game is always nonempty. Furthermore, all
core payoffs are efficient. This extends to our environment because each agent is a coalition of unit constituents
in the corresponding assignment game. However, we show that no dominant strategy mechanism exists that
achieves ex post efficiency. Thus, we identify an environment in which core payoffs exist but it is not possible
to elicit the information required to achieve them.

5Among other things, our paper generalizes the conditions under which buyers are known to be substitutes,
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matching problems with transfers that we identify resonates with Roth’s (1982) finding that in

a marriage market, in which there are no transfers, no mechanism exists that is strategy-proof

for both sides and generates stable matchings.6

The literature on Bayesian mechanism design has predominantly focused on settings with

one-dimensional types, with little attention to the connection between allocation problems

and matching problems. An important implication of our approach is that a broad class of

models are matching problems, including the canonical two-sided market models of Vickrey

(1961), Shapley and Shubik (1972), Myerson and Satterthwaite (1983), Gresik and Satterth-

waite (1989), McAfee (1992), Loertscher and Mezzetti (2016), and a two-sided, additively

separable version of Ausubel’s (2006) model with heterogeneous commodities. Rather than

being disjoint and independent problems, we demonstrate and characterize the connection be-

tween matching models and the models that are predominantly used in Bayesian mechanism

design.7

In a recent paper, Segal and Whinston (2014) derive impossibility results that revolve

around tests for a multi-valued marginal core in allocation games with monetary transfers. The

marginal core condition is useful in providing general conditions under which the impossibility

results hold but may be difficult to apply in practice. Our results regarding matching problems

provide a complementary approach for testing for the impossibility of ex post efficient trade.

The conditions we derive are conditions on the primitives of the model, namely the payoff

functions.

Our paper also relates to the literature on the micro-foundations of the canonical model of

price formation in markets. As first noticed by Arrow (1959), the Walrasian model is silent

about the institutions that simultaneously discover and set the market clearing prices. Recent

contributions by Satterthwaite, Williams, and Zachariadis (2014) and Satterthwaite, Williams,

which is a property that is assumed to hold in parts of the analysis of Bikhchandani and Ostroy (2002).
6A notionally related but substantively different strand of literature has studied similarities between matching

models without transfers and auctions, which involve transfers, and established equivalences between these two
models; see, for example, Kelso and Crawford (1982), Hatfield and Milgrom (2005), or Hatfield, Kominers,
Nichifor, Ostrovsky, and Westkamp (2015). In contrast, we study under what conditions a two-sided allocation
problem is a matching problem, focusing on models with quasi-linear utility and transfers in either case.

7In a recent paper that takes a bargaining (or robust mechanism design) approach to the problem of bilateral
trade with many items, Jackson, Sonnenschein, and Xing (2015) show that whether ex post efficiency is possible
depends on whether the two agents bargain over all items at once or independently. The difference between the
possibility results that Jackson, Sonnenschein, and Xing (2015) obtain and the impossibility results derived here
stems from a difference regarding the following assumptions: in line with Myerson and Satterthwaite (1983), we
assume that for every type realization of the other agent(s), an agent may be of such an unproductive type that
it is efficient that he does not trade at all, while the possibility results of Jackson, Sonnenschein, and Xing (2015)
are obtained under the assumption that the bilateral surplus over all items is positive for all type realizations
for which the density is positive.
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and Zachariadis (2015) have focused on the performance of the k-double-auction in environ-

ments with unit traders, allowing for the possibility of correlated types and interdependent

values. Our work is complementary to this research agenda. We do not restrict the mecha-

nism that the market maker employs, other than imposing incentive and individual rationality

constraints, and we allow for a general trading environment apart from imposing private values.

The remainder of this paper is organized as follows. Section 2 provides an illustrative exam-

ple. Section 3 describes the setup. In Section 4, we derive an impossibility result for dominant

strategy mechanisms. Section 5 introduces assignment games and proves an impossibility result

for one-to-one allocation problems. Section 6 defines matching problems and shows that the

condition for the impossibility result is satisfied in matching problems. Section 7 provides a

necessary and sufficient condition, decomposability, for a two-sided allocation problem to be a

matching problem and defines a general class of models, those where agents’ payoff functions

exhibit rank-dependent discounts, in which ex post efficient trade is impossible. Section 8

concludes. Proofs are in the appendix.

2 Example

A novel insight in this paper is that some two-sided allocation problems – those that we refer to

as matching problems – can be represented by an assignment game between unit constituents

of the agents and objects. This section provides an example of such a representation and

highlights some of the properties of assignment games that are useful for our purposes.

Consider a two-sided allocation problem with two buyers, called David and Martin, and a

seller, called Lloyd. Lloyd can produce two heterogeneous objects, A and B, at cost 2 for A, 3

for B, and 6 for producing both A and B. David values A at 9, B at 5, and the package AB

at 12, while Martin’s values are 5, 6, and 10, respectively.

With both buyers present, the efficient allocation assigns object A to David and object B to

Martin and generates a total welfare of 9. Because the efficient allocation involves Lloyd trading

with both David and Martin, this two-sided allocation problem cannot be represented as one-

to-one trades between David, Martin, and Lloyd. However, one can create unit constituents

of agents in such a way that a corresponding assignment game between the objects and the

unit constituents of the agents exists. Panel (a) of Table 1 defines the assignment game that is

equivalent to the two-sided allocation problem just described. For David and Martin, the first

unit constituent in Table 1 contains the marginal utility from receiving either A or B, while
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the second unit constituent represents the marginal utility from adding either A or B to the

package that already includes the other object. For Lloyd, the second unit constituent in the

assignment game represents the marginal cost of producing either A or B, while the first unit

constituent records the incremental cost of producing either A or B given that the other one

is produced.

Panel (a)

A B
David-1 9 5
David-2 7 3
Martin-1 5 6
Martin-2 4 5
Lloyd-1 3 4
Lloyd-2 2 3

Panel (b)

A B
Martin-1 5 6
Martin-2 4 5
Lloyd-1 3 4
Lloyd-2 2 3

Panel (c)

A B
David-1 9 5
David-2 7 3
Lloyd-1 3 4
Lloyd-2 2 3

Table 1: An assignment game corresponding to the two-sided allocation problem between
David, Martin, and Lloyd.

One can view the assignment of an object to a buyer’s unit constituent as meaning that

the buyer receives the object, while assigning the object to a seller’s unit constituent can be

viewed as meaning that the seller does not have to produce the object. Thus, if no unit

constituent of Lloyd receives an object, the interpretation is that Lloyd produces both objects.

It is immaterial which object is given to which unit constituent of a buyer if that buyer receives

both objects because the diagonal entries always sum to 12 and 10, respectively, and likewise

for the seller. However, if any agent receives only one object, optimality dictates that his first

unit constituent be assigned the object.

The solution to this assignment game, shown in bold in Panel (a) of Table 1, assigns object

A to the first unit constituent of David and B to the first unit constituent of Martin. Because

no unit constituent of Lloyd receives an object, Lloyd produces both objects. The total payoff

from this assignment is 15 and differs from the total welfare of 9 in the efficient allocation by

6, which is the cost imposed on Lloyd for producing both objects.

An important feature of the assignment game constructed above is that the correspondence

between the allocation problem and the assignment game carries over to any subset of agents.

To see this, compare the cases in which David and Martin, respectively, are removed from the

model. If David is not present in the original allocation problem, efficiency dictates that Lloyd

continue to produce both objects and that they be given to Martin, generating a total welfare

of 4. In the corresponding assignment game with both unit constituents of David removed,
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shown in Panel (b) of Table 1, both objects are optimally assigned to unit constituents of

Martin and the total value from these assignments is 10. As in the original case with all

agents included, the difference is 6. Likewise, if Martin is removed from the original two-sided

allocation problem, only object A is traded under efficiency, generating a welfare of 7. In

the corresponding assignment game, shown in Panel (c) of Table 1, object A is assigned to

the first unit constituent of David and object B is assigned to the first unit constituent of

Lloyd, generating a value in the assignment game of 13. The difference is again 6. Thus, the

correspondence between the solution to the two-sided allocation problem and the assignment

game holds when either buyer is removed.

If Lloyd is removed, no trade occurs and a welfare of 0 is generated. The corresponding

assignment game is obtained by removing the unit constituents of Lloyd as well as the objects

he is able to produce. In this simple example, an empty matrix is obtained yielding a value of

0. The difference between the welfare in the allocation problem and the value in the assignment

game is 0 because no object can be produced.

As will be seen below, the marginal core condition is satisfied if the sum of the individual

marginal surpluses is greater than the total surplus. For the values above, the condition holds

because the marginal surplus of David is 5 (=9-4), the marginal surplus of Martin is 2 (=9-7),

the marginal surplus of Lloyd is 9, and the total surplus generated is 9 (=9-0). In the assignment

game, a similar relationship holds as the unit constituents of a buyer or the unit constituents

and the objects of a seller are removed. The difference in the output of the assignment game

between the full game and the game without David is 5 (=15-10). Likewise the difference in

output is 2 (=15-13) when Martin is removed and 15 (=15-0) when Lloyd is removed. Because

the total output of the assignment game is 15 (=9+6), there is a direct correspondence between

the marginal surpluses in the allocation problem and the assignment game.

Under a VCG mechanism, Lloyd would receive a payment of 15 while David and Martin

would each pay 4. The net deficit is 7, which corresponds to the difference between the sum

of the marginal surpluses and the total surplus generated. Because this net difference can also

be calculated by removing sets of unit constituents from the assignment game, we can use

properties of the assignment game to determine conditions for which the impossibility theorem

holds. We use this intuition to generalize the impossibility theorem to matching problems in

Section 6.2.

While the example above highlights how two-sided allocation problems can be represented as
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an assignment game even in the presence of heterogeneous objects, not all two-sided allocation

problems can be represented in this way. For example, if David values the package AB at 15,

there is no way of representing the problem as an assignment game.

Intuition suggests that the dividing line between agents that are and are not decomposable

is whether they see objects as substitutes or complements. While Proposition 3 shows that

objects being substitutes is a necessary condition for decomposability, it is not sufficient. As one

example, consider an extension of our model where there is a third object, called C, and assume

that David derives a stand-alone payoff of 7 for this object, a payoff of 14 for the package AC,

and a payoff of 11 for the package BC. David is not decomposable and the two-sided allocation

problem is not a matching problem, irrespective of the payoff functions of other agents.

In Section 7.2, we show that an agent is decomposable if his payoff function exhibits rank-

dependent discounts. To the best of our knowledge, none of the existing definitions of substi-

tutability that have been used in the various literatures is sufficient to ensure decomposability

(see, e.g., Hatfield, Immorlica, and Kominers (2012) or Hatfield, Kominers, Nichifor, Ostrovsky,

and Westkamp (2015)).

3 Setup

A two-sided allocation problem consists of B buyers b ∈ B, S sellers s ∈ S, and O objects o ∈ O.

Each seller has Os objects os ∈ Os that only he can produce. Each object can be produced by

one seller. Therefore, {Os}s∈S is a partition of O. We call Os the potential set of seller s.

Each buyer b can consume any package xb ⊆ O. Let P := P(O) be the set of all possible

packages that can be consumed and define P = 2O to be the cardinality of the set.8 Each seller

s can produce any package xs ⊆ Os. Let Ps := P(Os) and define its cardinality as Ps = 2Os .

An allocation x = ((xb)b∈B, (xs)s∈S) corresponds to trades between buyers and sellers, where

xb is the package b receives and xs is the package s produces. An allocation is feasible if (i)

each seller produces a subset of his potential set: xs ⊆ Os for all s ∈ S, (ii) each object that

is consumed has been produced: xb ⊆ ∪s∈Sxs for all b ∈ B, and (iii) each object is consumed

at most once: xb ∩ xb′ = ∅ for any b, b′ ∈ B with b �= b′. Let X denote the set of feasible

allocations.

Buyer b’s payoff function takes the quasi-linear form ub(xb,vb)− tb, where xb is the package

8For instance, if there are two objects a and b, the set of possible packages contains {∅}, {a}, {b}, and {a, b}.
The cardinality of the set is 22 = 4.
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the buyer receives, vb is buyer b’s type, and tb is a monetary transfer made by buyer b to

the mechanism.9 Similarly, seller s’s payoff function is ts − ks(xs, cs), where ts is a monetary

transfer made by the mechanism to seller s. We normalize the gross surplus of non-trading

players to zero, i.e., ub(∅, ·) = 0 and ks(∅, ·) = 0. We also assume that ub(xb,vb) and ks(xs, cs)

only depend on the agents’ own allocations and on their own private types.10 We allow for free

disposal by both buyers and sellers. For a buyer of type vb who is allocated package xb, define

the upper envelope function ub:

ub(xb,vb) := max
x̂b

ub(x̂b,vb) such that x̂b ⊆ xb. (1)

The upper envelope function returns the largest possible utility from the available packages

that can be constructed from objects in xb allowing for free disposal. By construction, it is

monotonically increasing.

Analogously, for a seller of type cs who is allocated package xs, define the lower envelope

function ks:

ks(xs, cs) := min
x̂s

ks(x̂s, cs) such that xs ⊆ x̂s ⊆ Ps. (2)

The lower envelope function represents the cost for s to produce any package that includes

objects in xs, accounting for cases in which it may be cheaper for s to produce a larger package

and to dispose of some of the objects produced. By construction, the lower envelope function

is also monotonically increasing.

Types are agents’ own private information and are defined over the packages that they

produce or consume. This implies that a buyer b’s type vb ∈ RP is a P -dimensional vector

of values corresponding to each possible consumption package. A seller s’s type cs ∈ RPs is

a Ps-dimensional vector of costs corresponding to each possible production package. Let Vb

denote the set of possible types for buyer b and Cs denote the set of possible types for seller

s. The sets V = Πb∈BVb and C = Πs∈SCs are the products of the sets of types, with typical

elements v and c. We assume that Vb and Cs are closed and convex sets.

For a feasible allocation x ∈ X and types (v, c), define social welfare as

W (x,v, c) =
∑
b∈B

ub(xb,vb)−
∑
s∈S

ks(xs, cs). (3)

9While standard, the assumption of quasi-linear payoffs is restrictive. As pointed out in concurrent work by
Garratt and Pycia (2014), efficient bilateral trade may be possible if one relaxes this assumption.

10For the purposes of Theorem 1, we only need to assume that there are no negative externalities for non-
trading agents.
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Let x∗(v, c) be an efficient allocation, that is an allocation that maximizes W (x,v, c),

and let X∗(v, c) be the set of efficient allocations. Further denote the maximum welfare by

W ∗(v, c) := W (x∗(v, c),v, c). Because we have assumed free disposal, restricting attention to

upper envelope utility functions and lower envelope cost functions is without loss of generality

for the purpose of calculating the maximal welfare. When there is no risk of confusion, we drop

the dependence of x∗, X∗ and W ∗ on (v, c).

It is also useful to denote social welfare when a subset of buyers I ⊆ B and a subset of sellers

J ⊆ S are excluded. For any feasible allocation x of that allocation problem, social welfare is

W−I,−J(x,v, c) =
∑
b∈B\I

ub(xb,vb)−
∑
s∈S\J

ks(xs, cs). (4)

The maximum welfare of this smaller two-sided allocation problem is denoted W ∗
−I,−J

(v, c).

We drop the dependency on (v, c) when there is no risk of confusion and write W ∗
−I,−J

.

Let W−b,. = W ∗
−b,−∅ and W.,−s = W ∗

−∅,−s
be maximal welfare when only buyer b and seller

s are excluded from the economy. Buyer b ∈ B and seller s ∈ S are complements if for all

(v, c),

W ∗
−b,. −W ∗

−b,−s +W ∗
.,−s −W ∗

−b,−s ≤ W ∗ −W ∗
−b,−s.

The expressions W ∗
−b,. − W ∗

−b,−s and W ∗
.,−s − W ∗

−b,−s capture, respectively, the individual

marginal contribution to welfare of buyer b and seller s to an economy that consists of all

buyers other than b and all sellers other than s. The right side is the marginal contribution of

adding the pair consisting of b and s to the economy without this pair. Thus, the inequality

simply states that the marginal contribution of the pair is not less than the sum of the individ-

ual marginal contributions when the other agent is not there. In this sense, buyers and sellers

are complements. An equivalent representation of the complements condition can be found by

adding W ∗ to both sides of this equation and rearranging:

W ∗ −W ∗
−b,. +W ∗ −W ∗

.,−s ≥ W ∗ −W ∗
−b,−s. (5)

We use this alternative representation in the rest of the paper. It says that the sum of the

individual marginal products when the other agent is there exceeds the marginal product of

the pair.

We assume that the type space V × C is smoothly connected and that there exists a

least efficient buyer and seller type. Following Holmström (1979), we say the type space is

smoothly connected if for all buyers b, the set of mappings {ub(·,vb) : X → R | vb ∈ Vb} is
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smoothly connected, and for all sellers s, the set of mappings {ks(·, cs) : X → R | cs ∈ Cs}

is smoothly connected (for a formal definition of smooth connectedness, see Definition 1 in

Holmström (1979)).

Let v−b be the vector of types of buyers other than b and let (v̂b,v−b) be the vector v

with the type of buyer b replaced by v̂b, and similarly for sellers. We assume that for every

b ∈ B, there exists a least efficient type vb ∈ Vb such that for any type profile (vb,v−b, c) and at

every efficient allocation x∗(vb,v−b, c), xb = ∅. Analogously, we assume that for every s ∈ S,

there exists a least efficient type cs ∈ Cs such that for any type profile (v, cs, c−s) and efficient

allocation x∗(v, cs, c−s), xs = ∅.

A direct mechanism is a triple (χ, tβ, tσ), where χ : V × C → X is an allocation rule

and tβ : V × C → RB and tσ : V × C → RS are the payment rules. Thus, given reports

(v, c), χ(v, c) is the chosen allocation, buyer b pays tβb (v, c), and seller s receives tσs (v, c). An

allocation rule is ex post efficient if it specifies an efficient allocation for every (v, c). For

the purpose of deriving the conditions under which ex post efficiency is impossible without

running a deficit, the well-known revelation principle (Myerson, 1981) implies that we can

restrict attention to direct mechanisms without loss of generality.

A mechanism (χ, tβ, tσ) is dominant strategy incentive compatible (DIC) if for each

buyer b, type profile (v, c), and type v̂b for buyer b,

ub(χb(v, c),vb)− tβb (v, c) ≥ ub(χb(v̂b,v−b, c),vb)− tβb (v̂b,v−b, c),

and for each seller s, type profile (v, c), and type ĉs for seller s,

tσs (v, c)− ks(χs(v, c), cs) ≥ tσs (v, ĉs, c−s)− ks(χs(v, ĉs, c−s), cs),

where χb and χs denote the packages that buyer b receives and seller s produces under allocation

rule χ. Given a type profile (v, c), the revenue R(v, c) generated by the mechanism with

transfers (tβ, tσ) is

R(v, c) =
∑
b∈B

tβb −
∑
s∈S

tσs .

A mechanism satisfies ex post individual rationality (EIR) if for each buyer b and type

profile (v, c), ub(χb(v, c),vb)−tβb (v, c) ≥ 0 and for each seller s and type profile (v, c), tσs (v, c)−

ks(χs(v, c), cs) ≥ 0.

We say that a mechanism is efficient if it chooses an efficient allocation for any (v, c). We

say that efficient trade is impossible if all efficient mechanisms satisfying DIC and EIR have

R(v, c) ≤ 0 for all (v, c), with a strict inequality for some (v, c).

11



4 Impossibility of Efficient Trade

It is well known that if the condition

∑
b∈B

[W ∗ −W ∗
−b,.] +

∑
s∈S

[W ∗ −W ∗
.,−s] ≥ W ∗ (6)

is satisfied for all (v, c), with a strict inequality for some (v, c), then efficient trade is impossi-

ble.11 Indeed, in the setup of this paper, we have the following result:

Theorem 1 Efficient trade is impossible if (6) holds for all (v, c) and with strict inequality for

some (v, c).

While the formal proof, which we provide in the appendix, rests on a number of insights and

steps, the intuition for this result is simple. Observe first that W ∗ − W ∗
−b,. is the marginal

product of buyer b and W ∗ −W ∗
.,−s is the marginal product of seller s. Interpreted in this way,

condition (6) says that the sum of marginal products exceeds the total product W ∗. Because

incentive compatibility requires that every agent be paid his marginal product,12 condition

(6) implies a deficit. The proof shows that this intuition is correct. It additionally uses the

uniqueness of Groves’ schemes when the type space is smoothly connected (Holmström, 1979)

and the fact that the VCGmechanism is the revenue maximizing mechanism among mechanisms

that satisfy DIC and EIR.13,14

As noted, our focus is on dominant strategy incentive compatibility, while much of the

literature considers Bayesian incentive compatibility. Our approach rests on the insight that,

for setups like ours in which every agent has a least efficient type who never trades, if (6) is

11For example, the condition appears, in slightly different disguises, in McAfee (1991), Makowski and Mezzetti
(1994), Williams (1999), and Krishna (2002).

12Makowski and Ostroy (1987) show that any VCG mechanism is equivalent to a “MP mechanism” that always
gives each agent his marginal product, plus perhaps a lump sum.

13While the VCG mechanism is named after the independent contributions by Vickrey (1961), Clarke (1971),
and Groves (1973), the genealogy of the term is interesting and seems, to us, still somewhat unclear. To the
best of our knowledge, Makowski and Ostroy (1987) were the first to use it. Green and Laffont (1977) seem to
have coined the term Groves schemes in honor of the seminal contribution by Groves (1973), which specializes
to VCG with an appropriately chosen constant. Mas-Colell, Whinston, and Green (1995, Section 23.C) refer to
what we call VCG as a Groves-Clarke scheme. Tracing out the origins of the mechanism is not only complicated
by the fact that it has not been introduced by anyone deliberately (as opposed to, e.g., Nash equilibrium), but
also by the circumstance that the environment for which Groves schemes were first introduced (Groves, 1973)
was too rich to permit dominant strategies. Only when simplified to the setup studied in Groves and Loeb (1975)
does the mechanism endow agents with dominant strategies. More importantly, there appear to be conflicting
definitions of VCG that coincide when there exist least efficient types but differ when such types do not exist.

14There is an interesting parallel between how (6) implies impossibility of efficient trade and how increasing
returns to scale in the theory of the firm implies that a firm cannot break even under price-taking behavior. In
either case, agents are paid their marginal products, whose sum exceeds the total product.
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satisfied for all (v, c), with a strict inequality for some (v, c), then efficient trade is impossible

in any efficient mechanism that is Bayesian incentive compatible, provided distributions are

independent and have full support. This insight is based on Theorem 3 of Williams (1999).

In this sense, our approach comes with little loss of generality and allows us to abstract from

distributional assumptions.

In a recent paper, Segal and Whinston (2014) define the marginal core as the set of payoffs

where no coalition involving all but one agent can profitably deviate. They show that the

nonemptiness of the marginal core, along with some regularity conditions, implies that any

efficient mechanism runs a deficit. The nonemptiness of the marginal core is equivalent to

condition (6).

Less well understood are the conditions on the primitives of the economy under which

condition (6) holds. For example, (6) is satisfied in the bilateral trade problem because there

the marginal product is W ∗ for both the buyer and the seller whenever trade occurs, implying

that the sum of the marginal products is 2W ∗. In the remainder of the paper, we derive

conditions under which (6) is satisfied. We first show in Section 5 that this is the case in all

one-to-one allocation problems, where each buyer trades with at most one seller and inversely.

In Sections 6 and 7, we return to the primitives and derive conditions on the utility and cost

functions that ensure that (6) holds in many-to-many allocation problems.

5 One-to-One Allocation Problems

In this section, we analyze one-to-one allocation problems where each buyer is matched

with no more than one seller and each seller is matched with no more than one buyer for

all realizations of (v, c). Such problems are natural when agents’ types are one-dimensional,

buyers have unit demand, sellers have unit capacities and objects are homogeneous. However,

one-to-one allocation problems are not confined to setups with one-dimensional types. For

example, the housing market model of Shapley and Shubik (1972) has multi-dimensional types

because buyers with unit demand have heterogeneous values for the sellers’ houses.

In what the subsequent literature has referred to as an assignment game, Shapley (1962)

derives a result – stated as Theorem 2 below – that implies that buyers and sellers are comple-

ments. We use this result to show that in all one-to-one allocation problems, ex post efficient

trade is impossible.
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An assignment game is defined by a B × S-dimensional payoff matrix

A =

⎛
⎜⎜⎜⎝
a1,1 a1,2 · · · a1,S
a2,1 a2,2 · · · a2,S
...

...
. . .

...
aB,1 aB,2 · · · aB,S

⎞
⎟⎟⎟⎠ . (7)

The assignment game uses a corresponding B × S-dimensional matching matrix L with

elements lb,s ∈ {0, 1}, where lb,s = 1 if b and s are matched together and lb,s = 0 if they are

not. A matching is feasible if the sum of any row or column in the matching matrix is at most

one. A feasible match is efficient if the value of the match

∑
b∈B

∑
s∈S

lb,s ab,s (8)

is maximized. As is well-known, the efficient match from an assignment game can be found by

solving the following linear programming problem:15

max
L

∑
b∈B

∑
s∈S

lb,s ab,s

subject to
∑
s∈S

lb,s ≤ 1 for all b ∈ B

and
∑
b∈B

lb,s ≤ 1 for all s ∈ S.

(9)

We denote the value generated from an efficient match by V ∗(A). Similarly, we let V ∗(A−I,−J)

be the maximal value of an assignment game when rows I ⊆ B and columns J ⊆ S are removed.

Two buyers (or two sellers) are substitutes for each other if their joint marginal payoff

exceeds the sum of their individual marginal payoffs:

V ∗(A)− V ∗(A−b,.) + V ∗(A)− V ∗(A−b′,.) ≤ V ∗(A)− V ∗(A−{b,b′},.) for any b, b′ ∈ B

V ∗(A)− V ∗(A−s,.) + V ∗(A)− V ∗(A−s′,.) ≤ V ∗(A)− V ∗(A−{s,s′},.) for any s, s′ ∈ S.

Analogously, a buyer and a seller are complements to one another if their joint marginal

payoff is smaller than the sum of their individual marginal payoffs. That is, for any b ∈ B and

s ∈ S,

V ∗(A)− V ∗(A−b,.) + V ∗(A) − V ∗(A.,−s) ≥ V ∗(A)− V ∗(A−b,−s). (10)

Shapley (1962) establishes the following result:

15Solutions to this problem can be found by inspection if A is small enough, by using the Hungarian algorithm
of Kuhn (1955), or through linear programming techniques (Dantzig, 1963).
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Theorem 2 (Shapley, 1962) In any assignment game, any two agents on the same side of

the market are substitutes for each other while any two agents on opposite sides are complements

to each other.

For any allocation problem in which the efficient allocation is one-to-one for all (v, c), a

buyer b and a seller s who are matched always trade the package that maximizes their joint

surplus, whose value we denote by ab,s := max {maxx∈Ps ub(x,vb)− ks(x, cs) , 0 }. Using these

elements to construct an assignment game payoff matrix A as in (7), it follows that the one-

to-one allocation problem can be represented as an assignment game.

At an optimal matching in the resulting assignment game, W ∗−W ∗
−b,. = V ∗(A)−V ∗(A−b,.),

W ∗ −W ∗
.,−s = V ∗(A) − V ∗(A.,−s), and W ∗ −W ∗

−b,−s = V ∗(A) − V ∗(A−b,−s). By Theorem 2,

buyers and sellers in the assignment game are complements. In conjunction with the above

relationship between W ∗ and V ∗, this result implies that for any b ∈ B and s ∈ S,

W ∗ −W ∗
−b,. +W ∗ −W ∗

.,−s ≥ W ∗ −W ∗
−b,−s. (11)

Thus, buyers and sellers in the original two-sided allocation problems are complements. Notice

that in a one-to-one allocation problem, every active buyer trades with exactly one seller, and

vice versa. Suppose that under efficiency there are T ≥ 1 such trading pairs and relabel agents

so that buyer bτ traders with seller sτ for τ = 1, ..., T . If a buyer and a seller who optimally

trade together are both removed, the optimal matching does not change for the remaining

agents. Summing up the right side of (11) over τ thus yields
∑T

τ=1W
∗ − W ∗

−bτ ,−sτ
= W ∗.

Because the marginal product of every agent who does not trade is zero, we can likewise sum

up the left side of (11) to obtain

T∑
τ=1

[W ∗ −W ∗
−bτ ,.

+W ∗ −W ∗
.,−sτ ] =

∑
b∈B

[W ∗ −W ∗
−b,.] +

∑
s∈S

[W ∗ −W ∗
.,−s],

which is the left side of (6). Consequently, in one-to-one allocation problems, (11) implies (6).

We summarize this in the following proposition.

Proposition 1 Efficient trade is impossible in any one-to-one allocation problem.

Proposition 1 implies that if buyers and sellers have unit demand and unit supply or are

exogenously restricted to a single partner such as in the model of Shapley and Shubik (1972),

efficient trade is impossible. Thus, the intuition that what makes efficient trade problematic in
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the bilateral trade problem – that the buyer and the seller are complements – extends to any

one-to-one allocation problem. Because these problems are matching problems insofar as they

can be represented as assignment games, this naturally leads to the questions as to whether

efficient trade is impossible in any matching problem. In turn, this raises another question:

Which two-sided allocation problems are matching problems? In the next section, we give

answers to both questions, an affirmative one to the former.

Before we do so, it is useful to review briefly the argument behind Proposition 1. Com-

plementarity, as in (11), is evidently a pairwise property. In one-to-one allocation problems,

trade also always occurs in pairs, which allows us to sum up both sides in (11) over trading

pairs to obtain (6). This line of logic does not directly extend when trade is not restricted to

be one-to-one because, even when all buyer-seller pairs are complements, groups of buyers and

sellers can be substitutes. Hence we proceed to provide conditions on primitives that guarantee

that, essentially, all groups of traders are complements.

6 Many-to-Many Matching

We begin in Section 6.1 by defining a matching problem. In Section 6.2, we use a generalization

of Shapley (1962) to show that (6) holds in any matching problem, establishing the impossibility

result for any matching problem. Sufficient conditions to have a matching problem are then

the focus of Section 7.

6.1 Definition of a Matching Problem

Consider the assignment game defined by a payoff matrix A of dimension (B + 1)O ×O. The

rows of the payoff matrix represent unit constituents of the buyers and sellers while the

columns of the matrix represent objects. To allow for the matrix to encode the assignment of

any feasible package to a buyer, each buyer in the original allocation problem is represented

in the matrix as O unit constituents. There are O additional rows to represent the sellers,

resulting in a total of (B + 1)O rows. Each column of the matrix represents one of the O

objects in the economy.

Let B̂ be the set of buyer unit constituents with typical element b̂ and cardinality B̂ = B ·O.

Let Ŝ be the set of seller unit constituents with typical element ŝ and cardinality Ŝ = O. Then

R̂ := B̂ ∪ Ŝ is the set of all unit constituents, with typical element r. The cardinality of this

set, (B + 1)O, is equal to the number of rows of the payoff matrix.
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It is useful to also define B̂b ⊆ B̂ to be the set of unit constituents of buyer b with cardinality

O. Likewise we define Ŝs ⊆ Ŝ to be the set of unit constituents of seller s with cardinality Os.

We also define the set of unit constituents Î to be the unit constituents corresponding to the

buyers in set I, i.e., B̂b ⊆ Î if and only if b ∈ I. The set of seller unit constituents Ĵ corresponds

to sellers in set J in an analogous way. Finally, we denote by OJ := ∪s∈JOs the set of objects

in the potential set of a seller in set J.

Definition 1 A unit constituent-object assignment game of a two-sided allocation prob-

lem is a (B + 1)O × O matrix A = (ar,o)r∈R̂,o∈O with nonnegative elements satisfying ar,o = 0

for all (r, o) such that r ∈ Ŝs and o ∈ Os′ with s �= s′.

In the original two-sided allocation problem, objects could be (i) produced by a seller and

allocated to a buyer, (ii) produced by a seller and destroyed, or (iii) not produced. These

allocations are expressed in the matching matrix in the following way. When an object os ∈ Os

is assigned to a unit constituent of buyer b, this implies that the object is produced by seller

s and traded to buyer b. When an object os ∈ Os is not assigned to any unit constituent,

this implies the object is produced by seller s and destroyed. Finally, when an object os ∈ Os

is assigned to a unit constituent of seller s, this implies that the object is not produced.

In this way, the assignment game encodes an analogue of the two-sided allocation problem,

where each seller is initially required to produce all objects in his potential set and objects

are assigned to buyer unit constituents for consumption or seller unit constituents to reduce

required production. For buyer unit constituents, the payoff matrix encodes the utility that

the buyer receives from consuming an object. For seller unit constituents, the matrix encodes

the cost savings from not having to produce an object. The restriction in Definition 1 that

ar,o = 0 if r ∈ Ŝs and o ∈ Os′ with s �= s′ embeds the constraint that sellers can only produce

objects from their own potential set.

The maximum value created by assignment game A can be calculated by solving the fol-

lowing linear programming problem:

V ∗(A) := max
L

∑
r∈R̂

∑
o∈O

lr,o ar,o

subject to
∑
o∈O

lr,o ≤ 1 for all r ∈ R̂

and
∑
r∈R̂

lr,o ≤ 1 for all o ∈ O.

(12)
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It will be useful to define the assignment game in which a subset of unit constituents and a

subset of objects have been removed. For any T̂ ⊆ R̂, and K ⊆ O, let A−T̂,−K
be defined from

matrix A by removing all rows relating to unit constituents in T̂ and all columns relating to

objects in K.16

For any unit constituent-object assignment game A and any allocation x ∈ X, a feasible

matching L is said to be isomorphic to x if for any o ∈ O,

∑
r∈B̂b

lr,o =

{
1, if o ∈ xb
0, otherwise

for all b ∈ B and

∑
r∈Ŝs

lr,o =

{
1, if o ∈ Os \ xs
0, otherwise

for all s ∈ S.

When L is isomorphic to x, unit constituents of each buyer b are jointly assigned xb and unit

constituents of each seller s are jointly assigned Os \ xs, which are the objects that s does not

have to produce under allocation x. Let L(A, x) be the subset of feasible matchings of A that

are isomorphic to x.

Let L∗(A, x) ⊆ L(A, x) be the set of matchings that are isomorphic to x and return the

largest value. We refer to these as the set of best isomorphic matchings of allocation x in

assignment game A. Formally, for any L ∈ L(A, x), L ∈ L∗(A, x) if for all L′ ∈ L(A, x),

∑
r∈R̂

∑
o∈O

lr,o ar,o ≥
∑
r∈R̂

∑
o∈O

l′r,o ar,o. (13)

Where there is no risk of confusion, we write Lx for a best isomorphic matching of x in A. If

L∗(A, x) contains more than one element, then Lx can be arbitrarily chosen among them. It

is also useful to define x0 to be the allocation where nothing is produced (x0b = ∅ for all b and

x0s = ∅ for all s). Let Lx0

∈ L∗(A, x0) be a best isomorphic matching of x0. Notice that Lx0

matches all unit constituents of each seller to an object in that seller’s potential set but leaves

all buyer unit constituents unmatched.

We can now formally define a matching problem:

Definition 2 A two-sided allocation problem is a matching problem if for all (v, c) there

exists a unit constituent-object assignment game A satisfying Definition 1 such that for any

16Notice that A−T̂,−K̂
will not necessarily satisfy Definition 1. In fact A−T̂,−K̂

is a unit constituent-object

assignment game of a two-sided allocation problem if and only if for some I ∈ B and J ⊆ S, T̂ = Î ∪ Ĵ and
K = OJ. That is, for each buyer either none or all of his unit constituents are removed and for each seller either
none or all of his unit constituents and objects are removed. Observe however that the maximum value of any
assignment game, whether or not it satisfies Definition 1, can be computed using (12).
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feasible allocation x ∈ X and any best isomorphic matching Lx,

ub(xb,vb) =
∑
r∈B̂b

∑
o∈O

lxr,o ar,o for all b ∈ B and

ks(xs, cs) =
∑
r∈Ŝs

∑
o∈O

[
lx

0

r,o ar,o − lxr,o ar,o
]

for all s ∈ S.

This definition of a matching problem is natural insofar as all the information needed

to describe an allocation, the welfare consequences of an allocation, and the resulting trade

network is encoded in a one-to-one match between agent unit constituents and objects in a

bipartite graph. The utility that a buyer receives from consuming a package equals the sum of

the payoffs generated from assigning that package to unit constituents of that buyer. Likewise,

for any seller, there is an exact correspondence between the cost of producing a package and

the payoff that is generated from objects not assigned to unit constituents of that seller.

In the assignment game with all agents present, a buyer’s utility and a seller’s cost function

are independent of the package assigned to other agents. In order for Definition 2 to hold,

it must also be the case that in the best isomorphic matching of x, the payoffs generated by

an assignment of a package to unit constituents of a buyer or a seller is independent of the

assignments made to the unit constituents of the other agents. We show that this indepen-

dence allows us to maintain a correspondence between the two-sided allocation problem and

an assignment game even when subsets of buyers and sellers are removed.

Consider a two-sided allocation problem obtained by removing a subset of buyers I ⊆

B, a subset of sellers J ⊆ S, and the objects that correspond to these sellers OJ. Let

x =
(
(xb)b∈B\I, (xs)s∈S\J

)
be an allocation in this smaller two-sided allocation problem. Let

A−Î∪Ĵ,−OJ
be a submatrix of A with the rows corresponding to unit constituents in Î ∪ Ĵ and

the columns corresponding to objects in OJ removed. Note that A−Î∪Ĵ,−OJ
continues to satisfy

Definitions 1 and 2 for any allocation x. This implies that the smaller two-sided allocation

problem is a matching problem and has A−Î∪Ĵ,−OJ
as a corresponding assignment game. Let

Lx ∈ L∗(A−Î∪Î,−OJ
, x) be a best isomorphic matching of x in A−Î∪Î,−OJ

. Then, the following

lemma implies that social welfare in this best isomorphic matching is equal to the maximal

welfare generated from the corresponding assignment game up to a constant.

Lemma 1 Consider a matching problem with types (v, c) and corresponding unit constituent-

object assignment game A. For any subsets of agents I ⊆ B and J ⊆ S and any allocation

x ∈ X of the smaller matching problem obtained by removing these agents and their objects,
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let Lx ∈ L∗(A−Î∪Ĵ,−OJ
, x) be a best isomorphic matching of x in the unit constituent-object

assignment game A−Î∪Ĵ,−OJ
. Then,

W−I,−J(x,v, c) =
∑

r∈(B̂\Î)∪(Ŝ\Ĵ)

∑
o∈O

lxr,o ar,o − V ∗(A−B̂∪Ĵ,−OJ
)

and

W ∗
−I,−J = V ∗(A−Î∪Ĵ,−OJ

)− V ∗(A−B̂∪Ĵ,−OJ
). (14)

Lemma 1 shows that there is a correspondence between W ∗ and V ∗(A) in all matching

problems even when subsets of buyers and sellers are removed. The term V ∗(A−B̂∪Ĵ,−OJ
)

changes only with the number of included sellers and not with the match. The term normalizes

the output of the assignment game so that if all objects are optimally assigned to the sellers,

the value is zero.

6.2 Impossibility of Efficient Trade in Matching Problems

We now show that ex post efficient trade is impossible in all matching problems. We begin by

using Lemma 1 to derive a sufficient condition for (6) in matching problems. We then show

that this sufficient condition holds by extending the results of Shapley (1962).

Taking I = {b} and J = ∅ in equation (14) of Lemma 1 gives us W ∗
−b,. = V ∗(A−B̂b,.

) −

V ∗(A−B̂,.
), and taking I = ∅ and J = ∅ gives W ∗ = V ∗(A) − V ∗(A−B̂,.

). Thus, summing over

all b in B, Lemma 1 implies that

∑
b∈B

[W ∗ −W ∗
−b,.] =

∑
b∈B

[V ∗(A)− V ∗(A−B̂b,.
)].

Taking I = ∅ and J = {s} in (14) implies that W ∗
.,−s = V ∗(A−Ŝs,−Os

)−V ∗(A−B̂∪Ŝs,−Os
). Thus,

W ∗ −W ∗
.,−s =

[
V ∗(A)− V ∗(A−Ŝs,−Os

)
]
−

[
V ∗(A−B̂,.

)− V ∗(A−B̂∪Ŝs,−Os
)
]
.

Summing over all s in S and noting that the final term in the expression above is the value of

optimally assigning all objects in Os to unit constituents in Ŝs, which when summed over all

sellers gives V ∗(A−B̂,.
)− V ∗(A−B̂∪Ŝ,−O

), we have

∑
s∈S

[W ∗ −W ∗
.,−s] =

[∑
s∈S

[V ∗(A)− V ∗(A−Ŝs,−Os
)]

]
−

[
V ∗(A−B̂,.

)− V ∗(A−B̂∪Ŝ,−O
)

]
. (15)

Furthermore, Lemma 1 implies that

W ∗ −W ∗
−B,−S = V ∗(A)− V ∗(A−R̂,−O

)−

[
V ∗(A−B̂,.

)− V ∗(A−B̂∪Ŝ,−O
)

]
. (16)
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Combining these expressions, and noting that the final terms in (15) and (16) are the same

and that W ∗
−B,−S

= 0, it follows that (6) holds in a matching problem if

∑
b∈B̂

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑
s∈Ŝ

[V ∗(A)− V ∗(A−Ŝs,−Os
)] ≥ V ∗(A)− V ∗(A−R̂,−O

). (17)

We now show that (17) holds for all assignment games by generalizing the substitutes

condition of Shapley (1962). For an assignment game between unit constituents and objects,

we say that unit constituents are set substitutes if for any two disjoint subsets of unit

constituents T̂ ⊆ R̂ and T̂′ ⊆ R̂ with T̂ ∩ T̂′ = ∅,

V ∗(A)− V ∗(A−T̂,.
) + V ∗(A)− V ∗(A−T̂′,.

) ≤ V ∗(A)− V ∗(A−T̂∪T̂′,.
). (18)

We say that any number of unit constituents are substitutes if for any subset of unit

constituents T̂ ⊆ R̂,

∑
r∈T̂

[V ∗(A)− V ∗(A−r,.)] ≤ V ∗(A)− V ∗(A−T̂,.
). (19)

Likewise, objects are set substitutes if for any two disjoint subsets of objects K ⊆ O and

K′ ⊆ Ô with K ∩K′ = ∅,

V ∗(A)− V ∗(A.,−K) + V ∗(A)− V ∗(A.,−K′) ≤ V ∗(A)− V ∗(A.,−K∪K′), (20)

and any number of objects are substitutes if for any subset of objects K ⊆ O,

∑
o∈K

[V ∗(A) − V ∗(A.,−o)] ≤ V ∗(A)− V ∗(A.,−K). (21)

In addition, unit constituents and objects are set complements if for any T̂ ⊆ R̂ and

K ⊆ O,

V ∗(A)− V ∗(A−T̂,.
) + V ∗(A) − V ∗(A.,−K) ≥ V ∗(A)− V ∗(A−T̂,−K

). (22)

Shapley (1962) shows that in an assignment game, any two unit constituents or any two

objects are substitutes for each other. The following lemma generalizes this result, along with

a notion of complements, to sets:

Lemma 2 For any assignment game between unit constituents and objects, (i) unit constituents

are set substitutes, (ii) any number of unit constituents are substitutes, (iii) objects are set sub-

stitutes, (iv) any number of objects are substitutes, and (v) unit constituents and objects are

set complements.
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As was shown in Shapley (1962), buyer unit constituents and objects are complements in

the assignment game, and thus the sum of their marginal products is greater than the sum

for the pair. By Lemma 2, unit constituents of a given buyer are set substitutes and objects

traded to this buyer are set substitutes. As shown in the appendix, these two conditions are

enough to show that the marginal surplus lost from removing unit constituents corresponding

to a buyer plus the marginal surplus lost from removing the objects optimally matched to that

buyer exceeds the surplus lost from removing the corresponding trades. We can use this result

along with a careful accounting of matches between objects and sellers to show that ex post

efficient trade is impossible in all matching problems:

Theorem 3 Ex post efficient trade is impossible in any matching problem.

7 Characterization of Matching Problems

We now return to the primitives of the two-sided allocation problem to answer the question:

Under what conditions on buyers’ utility functions and sellers’ cost functions is a two-sided

allocation problem a matching problem?

In Section 7.1, we show that a necessary and sufficient condition for an allocation problem

to be a matching problem is that each agent’s payoff function can be derived as the solution

to an assignment game. Such a representation exists if an agent can be decomposed into unit

constituents and if a unit constituent-object assignment game exists such that the payoff to an

agent from a package of objects corresponds to the optimal solution of the corresponding unit

constituent-object assignment game. This is equivalent to requiring that the payoff function of

each agent is an assignment valuation as defined by Hatfield and Milgrom (2005).

In Section 7.2, we show that if an agent’s payoff function exhibits rank-dependent dis-

counts, then the agent is decomposable. We use this result to show that the impossibility

result holds in a variety of economically relevant settings.

In Section 7.3, we discuss the relation between decomposability and substitutes preferences.

7.1 Decomposition

For a buyer b ∈ B, let Ab be an O×O assignment game whose rows represent O unit constituents

of buyer b and columns represent objects. Let V ∗(Ab) be the maximal value that can be

generated from the assignment game. Assignment game Ab is a buyer decomposition of
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buyer b if for any package xb ∈ P,

ub(xb,vb) = V ∗(Ab
xb
),

where Ab
xb

is defined as the submatrix of Ab containing exclusively its columns related to objects

in xb. A buyer decomposition exists if it is possible to construct an assignment game whose

maximal value coincides with the upper envelope of the buyer’s utility function for any package

of objects. Buyer b is decomposable if such a decomposition exists.

As can be seen by comparing our definition of decomposability to the definition of assign-

ment valuation in Ostrovsky and Paes Leme (2015), a buyer in our model is decomposable

if and only if his utility function is an assignment valuation. We use the term decomposability

here to highlight the connection between assignment games and the ideas of Hurwicz (1973)

who uses the term decomposable to refer to environments without externalities. In our setup,

an agent is decomposable if there are no externalities from one unit constituent of the agent to

any other.

The concept of decomposability can be defined in an almost analogous way for a seller. Let

As be a Os ×Os assignment game with maximal value V ∗(As). The assignment game As is a

seller decomposition of seller s ∈ S if for any package xs ∈ Ps

ks(xs, cs) = V ∗(As)− V ∗(As
Os\xs

),

where As
Os\xs

is defined as a submatrix of As containing exclusively the columns related to

objects in Os \ xs. A seller is decomposable if it is possible to construct an assignment game

where the joint marginal payoff of the columns referring to objects in any package xs is equal

to the (lower envelope) cost of producing that package.17

If all agents are decomposable, then all utility and cost functions can be represented by an

assignment game. It is then possible to stack these matrices to obtain a larger matrix that

satisfies Definition 1. This implies that the two-sided allocation problem is a matching problem.

If some agent is not decomposable, then such a matrix cannot be constructed.

Theorem 4 A two-sided allocation problem is a matching problem if and only if each buyer

and seller is decomposable.

17We have restricted the number of unit constituents to be equal to the maximum number of objects that an
agent can consume or produce. This is without loss of generality, as shown in Lemma 3 in the appendix.
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7.2 Rank-Dependent Discounts Payoff Functions

Theorem 4 states decomposability as a necessary and sufficient condition for a two-sided allo-

cation problem to be a matching problem, but leaves open the question under which conditions

an agent is decomposable. In this section, we introduce a condition on payoff functions, called

rank-dependent discounts (RDD), and show that if an agent’s payoff function exhibits

RDD, then this agent is decomposable. The family of RDD payoff functions nests a wide range

of payoff functions as special cases, including homogeneous objects, additive payoffs, unit de-

mand and unit capacities, and an additive separable version of Ausubel’s (2006) heterogeneous

commodity model.

Let {Om}m∈Mb be a partition of O and denote the number of objects in block m by Om.

For any subset of objects xm ⊆ Om, denote the object in this subset with the ith highest

stand-alone utility, ub({o},vb), as o(i)(xm). That is:

ub({o(1)(xm)},vb) ≥ ub({o(2)(xm)},vb) ≥ ... ≥ ub({o(|xm|)(xm)},vb).

Also let δm = (δm,1, δm,2, ..., δm,Om) be a vector of rank-specific discount parameters of dimen-

sion Om with 0 = δm,1 ≤ δm,2 ≤ · · · ≤ δm,Om .

For a block of objects Om, a buyer’s payoff function exhibits RDD if for any xm ⊆ Om,

ub(xm,vb) =

|xm|∑
i=1

max{ub({o(i)(xm)},vb)− δm,i, 0}.

Rank-dependent discounts allow individuals to have arbitrary stand-alone utilities but impose

restrictions on the utility function as larger packages are assembled. As one example, recall

the situation in Section 2, where David initially has preferences over objects A and B, with

stand-alone utilities 9 and 5 and a utility for package AB of 12. These initial preferences exhibit

RDD because for package AB, ub({o(1)(AB)},vb) = 9, ub({o(2)(AB)},vb) = 5, and δm,2 = 2.

If there were a third object C with stand-alone utility of 7, then in order to exhibit RDD on

ABC, David’s utility for the package consisting of A and C would need to be 14 and his utility

for the package consisting of B and C would need to be 10.

Definition 3 A buyer’s utility function exhibits RDD if there exists a partition {Om}m∈Mb

and a collection of discount vectors δ = {δ1, . . . , δMb} such that for any x ∈ P,

ub(x,vb) =
∑

m∈Mb

|xm|∑
i=1

max{ub({o(i)(xm)},vb)− δm,i, 0},

where xm := x ∩Om.
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RDD requires that a buyer’s utility function be additive across blocks and that, within each

block, the value of a package be equal to the sum of the stand-alone utilities minus a discount

that only depends on the number of units the package contains. These requirements are met in

the homogeneous objects case with decreasing marginal utility because the stand-alone cost of

all objects is the same and the addition of an extra unit has a fixed discount. The requirements

are also satisfied in the case of additive utility because each object constitutes a separate block.

Analogous to the buyers, let {Om,s}m∈Ms be a partition of the set of objects Os and denote

the number of objects in block m by Om,s. For any subset of objects xm ⊆ Om,s, denote

the object in this subset with the ith lowest stand-alone cost, ks({o}, cs), as o(i)(xm). Also

let δm = (δm,1, δm,2, ..., δm,Om,s) be a vector of rank-specific discount parameters of dimension

Om,s with 0 = δm,1 ≤ δm,2 ≤ · · · ≤ δm,Om,s .

Definition 4 A seller’s cost function exhibits RDD if there exists a partition {Om,s}m∈Ms and

vector of discounts δ = {δ1, . . . , δMs} such that for any x ∈ Ps,

ks(x, cs) =
∑

m∈Ms

|xm|∑
i=1

ks({o(i)(xm)}, cs) + δm,i,

where xm := x ∩Om,s.

As with the buyer, a seller’s cost function exhibits RDD if there exists a partition of the

seller’s potential set where costs are additive across blocks and, within each block, the cost

of producing a package is equal to the sum of the stand-alone utilities plus a discount that

only depends on the number of units the package contains.18 Such preferences may represent

a situation where a seller has M s production lines or factories and each production facility

produces homogeneous objects.

The family of RDD payoff functions nests a wide range of payoff functions as special cases.

As mentioned earlier, if all stand-alone utilities (costs) are the same, then the buyer (seller)

considers the objects to be homogeneous. If the discount parameters are very large then buyers

and sellers are unit traders in the sense that they efficiently consume, respectively produce,

packages containing at most one unit.19

18The seller’s problem is the same as the buyers problem if one views the seller as initially owning his potential
set and selling the objects he values least first.

19One-to-one allocation problems studied in Section 5 can be mapped into a matching problem with RDD
payoffs by first determining the package that maximizes the joint surplus of each pair and then redefining cost
and utility functions over these efficient packages. Agents in this transformed problem are unit traders.
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The assignment game of Shapley and Shubik (1972) is a special case of this model because

buyers are unit traders and the potential set of each seller contains one object. In contrast, if

the discount parameters are zero, then the agent has additive payoffs. Ausubel (2006) studies

a model in which the set of objects is partitioned into commodities, with multiple units of

each commodity available. The version of that model in which payoffs are additively separable

across commodities ensures that all payoff functions exhibit RDD.

The following proposition shows that the general nature of RDD payoff functions allows us

to classify various well-known models as matching problems.

Proposition 2 An agent is decomposable if his payoff function exhibits RDD.

Corollary 1 Any two-sided allocation problem in which all agents’ payoff functions exhibit

RDD is a matching problem.

An immediate implication of Corollary 1 is that ex post efficient trade is impossible in any

two-sided allocation problem in which all payoff functions exhibit RDD. Because decompos-

ability is determined at the individual level, Corollary 1 allows us to derive the impossibility

theorem for setups in which agents have different payoff functions as long as all of them exhibit

RDD. Thus, our results can be applied to settings in which buyers and sellers have different

characteristics.

7.3 Decomposability and Substitutes Preferences

In all the applications introduced above, objects are substitutes for all buyers and all sellers.

This is not a coincidence. As recognized by Hatfield and Milgrom (2005, Theorem 14) and

discussed below, an agent can only be decomposable if he perceives objects as substitutes.

For a buyer b consuming a package x ∈ P, two disjoint subsets of that package y, z ⊆ x

with y ∩ z = ∅ are substitutes for each other if

ub(x,vb)− ub(x \ y,vb) ≤ ub(x \ z,vb)− ub(x \ (y ∪ z),vb),

that is, if the marginal utility of y weakly increases when z is removed. For a seller s producing

a package x ∈ Ps, two disjoint subsets of that package y, z ⊆ x with y ∩ z = ∅ are substitutes

for each other if the marginal cost of y weakly decreases when z is removed:

ks(x, cs)− ks(x \ y, cs) ≥ ks(x \ z, cs)− ks(x \ (y ∪ z), cs).
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Proposition 3 An agent is decomposable only if any two disjoint subsets of any package are

substitutes for one another.

The intuition is clear. From Shapley (1962), we know that any two objects in a unit

constituent-object assignment game are substitutes for each other, which, by Lemma 2, ex-

tends to sets of objects. Because an assignment game does not allow any complementarity

between objects, the payoff function in a two-sided allocation problem also cannot exhibit

complementarity if it is to be decomposable.

8 Conclusion

We establish the impossibility of ex post efficient trade for general environments with buyers

and sellers whose types are multi-dimensional. For assignment games, which are two-sided

allocation problems with one-to-one matching, a result due to Shapley (1962) establishes that

buyers and sellers are complements. This implies the impossibility result for all one-to-one

allocation problems. We generalize the impossibility result to setups in which trades are not

necessarily one-to-one by first answering a question that is of independent interest: When is

a two-sided allocation problem a matching problem? We show that a two-sided allocation

problem is a matching problem – in the sense that to any allocation corresponds a matching

in an assignment game – if and only if each agent is decomposable.

As in Hurwicz (1973), decomposability means that there are no externalities, with the dif-

ference relative to Hurwicz’s setup being that here there are no externalities between unit con-

stituents of the same agent. The impossibility result then generalizes to all two-sided allocation

problems that are matching problems, that is, to all setups in which agents are decomposable.

We also introduce a new family of utility and cost functions, called rank-dependent discounts

(RDD) payoff functions and show that RDD is sufficient for decomposability. RDD utility and

cost functions nest a wide range of payoff functions as special cases, including homogeneous

objects, additive payoffs, unit demands and supplies, and an additively separable version of the

heterogeneous commodities model of Ausubel (2006).

Our research opens up a number of avenues for future study. While we have partially classi-

fied the set of many-to-many environments that can be mapped into matching problems, it may

be useful to explore alternative conditions on preferences to study further the correspondence

between many-to-many allocation problems and matching problems. RDD and decomposabil-

ity are likely to prove useful in a variety of other contexts and applications. If the allocation
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problem is decomposable, a core payoff necessarily exists and the efficient allocation is com-

putationally tractable because it can be calculated using linear programming. Because it

is a condition on individual agents’ payoffs, it can be verified without having to account for

the interaction between different agents whose payoff functions may vary considerably. Lastly,

decomposability and RDD may also be a necessary condition for efficiency to be achievable via

clock auctions, which have a number of advantages over direct mechanisms.
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Appendix: Proofs

Proof of Theorem 1: Let x∗(vb,v−b, c) ∈ X∗(vb,v−b, c) and define for every buyer b,

W V CG
−b (v−b, c) := min

vb∈Vb

W (x∗(vb,v−b, c),vb,v−b, c). (23)

Similarly, for every seller s, define

W V CG
−s (v, c−s) := min

cs∈Cs

W (x∗(v, cs, c−s),v, cs, c−s). (24)

Notice that W V CG
−b (v−b, c) and W V CG

−s (v, c−s) are independent of, respectively, vb and cs.

The VCG mechanism selects χ(v, c) ∈ X∗(v, c), requires each buyer to pay a transfer

payment of

tβb (v, c) = W V CG
−b (v−b, c)− (W ∗(v, c) − ub(χ(v, c),vb)),

and pays each seller a transfer payment of

tσs (v, c) = W ∗(v, c) + ks(χ(v, c), cs)−W V CG
−s (v, c−s).

The VCG mechanism is dominant strategy incentive compatible because it aligns every agent’s

incentives with those of society by making the objective function of every individual equal to

social welfare plus a constant (W V CG
−s (v−b, c) for a seller and −W V CG

−b (v, c−s) for a buyer). It is

also ex post individually rational because ub(x
∗,vb)− tβb (v, c) ≥ 0 and tσs (v, c)− ks(x

∗, cs) ≥ 0

for any b, s, and (v, c). By the revenue equivalence arguments of Green and Laffont (1977)

and Holmström (1979), the VCG mechanism is the revenue maximizing mechanism among all

mechanisms that respect agents’ individual rationality constraints ex post and endow them with

dominant strategies. Our focus on the VCG mechanism is therefore without loss of generality.

Because we have assumed that there exists a least efficient buyer type, vb is the minimizer

of W (x∗(vb,v−b, c),vb,v−b, c), and similarly cs is the minimizer ofW (x∗(v, cs, c−s),v, cs, c−s).

Thus, in our environment, W V CG
−b (v−b, c) = W ∗

−b,.(v−b, c) andW V CG
−s (v, c−s) = W ∗

.,−s(v, c−s).
20

Revenue to the mechanism when the types are (v, c), denoted R(v, c), is thus

R(v, c) =
∑
b∈B

tβb (v, c) −
∑
s∈S

tσs (v, c)

= W ∗(v, c) +
∑
b∈B

[W ∗
−b,.(v−b, c)−W ∗(v, c)] +

∑
s∈S

[W ∗
.,−s(v, c−s)−W ∗(v, c)].

(25)

20Many authors define VCG with W ∗
−b,. and W ∗

.,−s directly. For example Green and Laffont (1977), Holmström
(1979), Makowski and Ostroy (1987), Mas-Colell, Whinston, and Green (1995), and Milgrom (2004) use this
definition. Authors using our definition include Krishna (2002) (which is based on Krishna and Perry (2000)),
Segal and Whinston (2014), Segal and Whinston (2011), and Loertscher, Marx, and Wilkening (2015). The
generalization of VCG to interdependent values by Ausubel (1999) also makes use of the more general definition.
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Using (25), the condition for VCG revenue, R(v, c), to be less than or equal to zero is

equivalent to

∑
b∈B

[W ∗(v, c) −W ∗
−b,.(v, c)] +

∑
s∈S

[W ∗(v, c) −W ∗
.,−s(v, c)] ≥ W ∗(v, c), (26)

which is equivalent to condition (6).

It is clear from the argument above that for a given (v, c), if (6) holds strictly (and so (26)

holds strictly), then VCG revenue is negative, i.e., R(v, c) < 0. To see that (6) holds strictly

for an open set of type profiles, consider the type profile v−b = v−b and c−s = c−s and vb and

cs such that s and b efficiently trade with each other and no other trades occur. Because the

type-space is smoothly connected, s and b will still efficiently trade with each other while all the

other agents will efficiently not trade in an open neighborhood of these types. Because b and s

remain the only traders, the sum of their marginal products strictly exceeds social welfare. �

Proof of Lemma 1: By Definition 2,

ub(xb,vb) =
∑
r∈B̂b

∑
o∈O

lxr,o ar,o for all b ∈ B \ I, and

ks(xs, cs) =
∑
r∈Ŝs

∑
o∈O

[lx
0

r,o ar,o − lxr,o ar,o] for all s ∈ S \ J,

where x0 is the allocation that leaves all remaining agents with an empty package (x0b = ∅

for all b ∈ B \ I and x0s = ∅ for all s ∈ S \ J) and Lx0

is a best isomorphic matching of that

allocation in A−Î∪Ĵ,−OJ
. From (4) recall that social welfare W−I,−J(x,v, c) is

W−I,−J(x,v, c) =
∑
b∈B\I

ub(xb,vb)−
∑
s∈S\J

ks(xs, cs).

Combining these two results yields

W−I,−J(x,v, c) =
∑
b∈B\I

∑
r∈B̂b

∑
o∈O

lxr,o ar,o −
∑
s∈S\J

∑
r∈Ŝs

∑
o∈O

[lx
0

r,o ar,o − lxr,o ar,o]

=
∑

r∈(B̂\Î)∪(Ŝ\Ĵ)

∑
o∈O

lxr,o ar,o −
∑
r∈Ŝ\Ĵ

∑
o∈O

lx
0

r,o ar,o.

Recalling that L0 optimally matches the unit constituents of each seller s with the objects in

Os, ∑
r∈Ŝ\Ĵ

∑
o∈O

lx
0

r,o ar,o = V ∗(A−B̂∪Ĵ,−O
Ĵ

) for any J ⊆ S.
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Combining the last two definitions completes the proof of the first part of the statement,

W−I,−J(x,v, c) =
∑

r∈(B̂\Î)∪(Ŝ\Ĵ)

∑
o∈O

lxr,o ar,o − V ∗(A−B̂∪Ĵ,−O
Ĵ

) � (27)

To complete the proof, it remains to show that Lx∗
is an optimal matching of A−Î∪Ĵ,−OJ

.

To see this, consider any feasible matching of A−Î∪Ĵ,−OJ
. Because it assigns each object at

most once, it is an isomorphic matching of some allocation. The output it produces is therefore

at most the output produced by a best isomorphic matching of that allocation. By (27) and

because x∗ is efficient, this cannot exceed the output created by Lx∗
, which is equal to W ∗

−I,−J
+

V ∗(A−B̂∪Ĵ,−OJ
). The latter is therefore an optimal matching of A−Î∪Ĵ,−OJ

. Consequently,∑
r∈(B̂\Î)∪(Ŝ\Ĵ)

∑
o∈O lx

∗

r,o ar,o = V ∗(A−Î∪Ĵ,−OJ
) and

W ∗
−I,−J = V ∗(A−Î∪Ĵ,−OJ

)− V ∗(A−B̂∪Ĵ,−OJ
). �

Proof of Lemma 2: We begin by proving part (ii), showing that (19) holds. Observe first

that (19) holds with an equality if T̂ ≤ 1, so we assume that T̂ ≥ 2. Label the elements of T̂

such that T̂ = {r1, ..., rT̂ } and define T̂n := {r1, ..., rn} for any n ∈ {1, ..., T̂ } as well as T̂0 := ∅.

By Theorem 2, for any m ∈ {2, ..., T̂ } and n ∈ {1, ...,m−1}, rm and rn are substitutes for each

other in the assignment game defined by matrix A−T̂n−1,.
. That is, for any m ∈ {2, ..., T̂ } and

n ∈ {1, ...,m − 1},

V ∗(A−T̂n−1,.
)−V ∗(A−T̂n−1∪{rm},.)+V ∗(A−T̂n−1,.

)−V ∗(A−T̂n,.
) ≤ V ∗(A−T̂n−1,.

)−V ∗(A−T̂n∪{rm},.),

which can be rearranged as

V ∗(A−T̂n−1,.
)− V ∗(A−T̂n−1∪{rm},.) ≤ V ∗(A−T̂n,.

)− V ∗(A−T̂n∪{rm},.). (28)

Evaluating (28) at n = 1, ...,m − 1 gives us a series of m− 1 inequalities of the form

V ∗(A)− V ∗(A−rm,.) ≤ V ∗(A−r1,.)− V ∗(A−{r1,rm},.)

V ∗(A−r1,.)− V ∗(A−{r1,rm},.) ≤ V ∗(A−{r1,r2},.)− V ∗(A−{r1,r2,rm},.)

...

V ∗(A−T̂m−2,.
)− V ∗(A−T̂m−2∪{rm},.) ≤ V ∗(A−T̂m−1,.

)− V ∗(A−T̂m,.
),

which implies

V ∗(A) − V ∗(A−rm,.) ≤ V ∗(A−T̂m−1,.
)− V ∗(A−T̂m,.

). (29)
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Because (28) holds for any m ∈ {2, ..., T̂ }, so does (29). When m = 1, T̂m−1 = T̂0 ≡ ∅, in

which case (29) is satisfied with an equality. Therefore (29) implies

T̂∑
m=1

[V ∗(A)− V ∗(A−rm,.)] ≤

T̂∑
m=1

[V ∗(A−T̂m−1,.
)− V ∗(A−T̂m,.

)]

= V ∗(A−T̂0,.
)− V ∗(A−T̂

T̂
,.
)

= V ∗(A)− V ∗(A−T̂,.
),

where the first equality expands the sum and cancels terms and the final equality uses T̂0 ≡ ∅

and T̂
T̂
≡ T̂. This completes the proof that (19) holds and so completes the proof of part (ii).

�

We now turn to the proof of part (i), showing that (18) holds. Similar to the case above,

(18) holds with an equality if either T̂ = ∅ or T̂′ = ∅, so we focus on the case in which both

subsets contain at least one element. As before, let T̂n := {r1, ..., rn} for any n ∈ {1, ..., T̂ }

and, analogously, let T̂′
m := {r′1, ..., r

′
m} for any m ∈ {1, ..., T̂ ′}. Define T̂0 := ∅ and T̂′

0 := ∅.

By Theorem 2, for any n ∈ {1, ..., T̂ } and m ∈ {1, ..., T̂ ′}, rn and r′m are substitutes for each

other in the assignment game defined by matrix A−T̂n−1∪T̂′
m−1

,.
. That is, for any n ∈ {1, ..., T̂ }

and m ∈ {1, ..., T̂ ′},

V ∗(A−T̂n−1∪T̂′
m−1

,.
)− V ∗(A−T̂n∪T̂′

m−1
,.
) + V ∗(A−T̂n−1∪T̂′

m−1
,.
)− V ∗(A−T̂n−1∪T̂′

m,.
)

≤ V ∗(A−T̂n−1∪T̂′
m−1

,.
)− V ∗(A−T̂n∪T̂′

m,.
).

By rearranging the above inequality we obtain

V ∗(A−T̂n−1∪T̂′
m−1

,.
)− V ∗(A−T̂n∪T̂′

m−1
,.
) ≤ V ∗(A−T̂n−1∪T̂′

m,.
)− V ∗(A−T̂n∪T̂′

m,.
). (30)

By an analogous argument to the one developed in the proof of part (ii), keeping n fixed and

invoking (30) for each possible value of m between 1 and T̂ ′ yields a series of T̂ ′ inequalities

such that the right side of each is equal to the left side of the next. The left side of the first

one must therefore be weakly smaller than the right side of the last one, that is

V ∗(A−T̂n−1,.
)− V ∗(A−T̂n,.

) ≤ V ∗(A−T̂n−1∪T̂′,.
)− V ∗(A−T̂n∪T̂′,.

),

which is equivalent to

V ∗(A−T̂n−1,.
)− V ∗(A−T̂n−1∪T̂′,.

) ≤ V ∗(A−T̂n,.
)− V ∗(A−T̂n∪T̂′,.

).
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Because this inequality holds for any n ∈ {1, ..., T̂ }, analogous reasoning to above yields

V ∗(A)− V ∗(A−T̂′,.
) ≤ V ∗(A−T̂,.

)− V ∗(A−T̂∪T̂′,.
),

which is equivalent to (18) and completes the proof of part (i). �

By the symmetry of assignment games, the proofs of parts (iii) and (iv) are analogous. �

We conclude with the proof of part (v), showing that (22) holds. Similarly to the proofs

of parts (i) and (ii), (22) holds with an equality if either T̂ = ∅ or K = ∅, hence we focus on

the case in which both subsets contain at least one element. As before, let T̂n := {r1, ..., rn}

for any n ∈ {1, ..., T̂ } and, analogously, let Km := {o1, ..., om} for any m ∈ {1, ...,K}. Define

T̂0 := ∅ and K0 := ∅.

By Theorem 2, for any n ∈ {1, ..., T̂ } andm ∈ {1, ...,K}, rn and om are complements to each

other in the assignment game defined by matrix A−T̂n−1,−Km−1
. That is, for any n ∈ {1, ..., T̂ }

and m ∈ {1, ...,K},

V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n,−Km−1

) + V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n−1,−Km

)

≤ V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n,−Km

).

By rearranging the above inequality we obtain

V ∗(A−T̂n−1,−Km−1
)− V ∗(A−T̂n,−Km−1

) ≤ V ∗(A−T̂n−1,−Km
)− V ∗(A−T̂n,−Km

). (31)

The remainder of the proof of part (v) is analogous to the proof of part (ii) starting after (28).

�

Proof of Theorem 3: We have established in the main text that (17) implies (6) and therefore

is a sufficient condition for the impossibility of ex post efficient trade. The remainder of the

proof is therefore devoted to proving that (17) holds for any unit constituent-object assignment

game A.

Let L∗ be an optimal matching of A such that

(i)
∑

r∈R̂ l∗r,o = 1 for all o ∈ O, and

(ii) l∗r,o = 0 for all pairs (r, o) such that r ∈ Ŝs and o ∈ Os′ where s, s′ ∈ S with s �= s′

An optimal matching satisfying (i) and (ii) always exists: An optimal matching satisfying

(i), which states no object is left unmatched, always exists because objects are on the short
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side and the elements of A are nonnegative. Moreover, by Definition 1, ar,o = 0 if r ∈ Ŝs and

o ∈ Os′ with s �= s′. Consequently, one can always find an optimal matching that only matches

seller unit constituents with objects that belong to their seller’s potential set, as required by

(ii).

For all o ∈ O, let s(o) ∈ S be such that o ∈ Os(o) and let r∗(o) ∈ B̂ ∪ {s(o)} be the unit

constituent that L∗ matches with object o. Then l∗
r∗(o),o = 1 for all o ∈ O and l∗r,o = 0 for all

(r, o) with r �= r∗(o). It follows that

V ∗(A) =
∑
r∈R̂

∑
o∈O

l∗r,o ar,o =
∑
o∈O

ar∗(o),o.

Let Õs := {o ∈ Os | r∗(o) ∈ B̂} be the subset of objects in seller s’s potential set that are

matched with a buyer unit constituent. Then Os \ Õs represents the set of objects matched

with unit constituents of s. Let Õ := ∪s∈SÕs = {o ∈ O | r∗(o) ∈ B̂} be the set of objects

matched to a unit constituent of a buyer.

Theorem 2 implies that the marginal product of each unit constituent and each object

exceeds the marginal product generated. This implies that:

∑
o∈Õ

[V ∗(A)− V ∗(A−r∗(o),.) + V ∗(A)− V ∗(A.,−o)] ≥
∑
o∈Õ

[V ∗(A)− V ∗(A−r∗(o),−o)]. (32)

Because o and r∗(o) are optimally matched together, removing that pair does not affect the

rest of the assignment game. Consequently, its marginal product is V ∗(A)− V ∗(A−r∗(o),−o) =

ar∗(o),o, and the right side of (32) is equal to
∑

o∈Õ
ar∗(o),o.

Notice next that

∑
o∈Õ

[V ∗(A)− V ∗(A−r∗(o),.)] =
∑
b̂∈B̂

[V ∗(A)− V ∗(A−b̂,.
)]

because each object in Õ is matched to a buyer unit constituent and each one of the latter is

either unmatched or matched to an object in Õ. By part (ii) of Lemma 2, for any b ∈ B we

have

V ∗(A)− V ∗(A−B̂b,.
) ≥

∑
b̂∈B̂b

[V ∗(A)− V ∗(A−b̂,.
)],

while part (iv) of Lemma 2 implies for any s ∈ S

V ∗(A)− V ∗(A
.,−Õs

) ≥
∑
ô∈Õs

[V ∗(A)− V ∗(A.,−o)].
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Adding up these terms over the buyers and sellers yields∑
b∈B

[V ∗(A)− V ∗(A−B̂b,.
)] ≥

∑
b̂∈B̂

[V ∗(A)− V ∗(A−b̂,.
)]

and
∑
s∈S

[V ∗(A)− V ∗(A
.,−Õs

)] ≥
∑
o∈Õ

[V ∗(A)− V ∗(A.,−o)].

Using these results along with (32) yields∑
b∈B

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑
s∈S

[V ∗(A)− V ∗(A
.,−Õs

)] ≥
∑
o∈Õ

ar∗(o),o. (33)

Removing unit constituents cannot increase the value created by an assignment game, that

is, V ∗(A
.,−Õs

) ≥ V ∗(A−Ŝs,−Õs
). Combined with (33), this yields∑

b∈B

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑
s∈S

[V ∗(A)− V ∗(A−Ŝs,−Õs
)] ≥

∑
o∈Õ

ar∗(o),o. (34)

We next look at the marginal product of objects in O\Õ. Each object in Os\Õs is matched

with a unit constituent of s and each unit constituent of s is either unmatched or matched with

an object in Os \ Õs, therefore for any s ∈ S, removing Ŝs and Os \ Õs implies that unmatched

unit constituents and matched pairs are removed, hence for all s ∈ S,

V ∗(A)− V ∗(A
−Ŝs,−Os\Õs

) =
∑

o∈Os\Õs

ar∗(o),o.

Using this result in conjunction with (34) yields∑
b∈B

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑
s∈S

[
V ∗(A)− V ∗(A

−Ŝs,−Õs
) + V ∗(A) − V ∗(A

−Ŝs,−Os\Õs
)
]

≥
∑
o∈O

ar∗(o),o.

We now invoke part (iii) of Lemma 2 to obtain, for all s ∈ S,

V ∗(A)− V ∗(A−Ŝs,−Os
) ≥ V ∗(A)− V ∗(A

−Ŝs,−Õs
) + V ∗(A)− V ∗(A

−Ŝs,−Os\Õs
).

and thus ∑
b∈B

[V ∗(A)− V ∗(A−B̂b,.
)] +

∑
s∈S

[V ∗(A)− V ∗(A−Ŝs,−Os
)] ≥

∑
o∈O

ar∗(o),o.

Observe finally that all objects in O are matched to a unit constituent in R̂ and all unit

constituents in R̂ are either unmatched or matched to an object in O. Removing R̂ and O

means removing matched pairs and unmatched unit constituents so

V ∗ (A)− V ∗
(
A−R̂,−O

)
=

∑
o∈O

ar∗(o),o.
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Combining the last two results yields (17), which completes the proof. �

As mentioned in footnote 17, the following lemma shows that restricting attention to decom-

positions with a finite number of buyer and seller unit constituents is without loss of generality.

Lemma 3 A buyer b who can be decomposed into any number of unit constituents can also be

decomposed into O unit constituents. A seller s who can be decomposed into any number of

unit constituents can also be decomposed into Os unit constituents.

Proof of Lemma 3: Consider a buyer b and a set of objects O. Let Ab be a decomposition

of b containing any number of rows. B̂b is the set of unit constituents of b, each represented as

a row of Ab. Therefore, Ab has B̂b ≡ |B̂b| rows and O columns. We need to show that for any

number B̂b, there exists an O × O matrix that constitutes a decomposition of b. The case for

a seller is analogous except that the decomposition only has Os columns. Hence we only prove

the lemma for a buyer.

If B̂b ≤ O, then it is possible to add O − B̂b rows of zeroes without changing the problem,

so any buyer that can be decomposed into B̂b ≤ O unit constituents can also be decomposed

into O unit constituents.

If B̂b > O, then objects are on the short side and any optimal matching will leave at

least B̂b − O unit constituents unmatched. Let B̂′
b ⊆ B̂b be a subset containing B̂b − O unit

constituents that are unmatched in an optimal matching of Ab. Let Âb := Ab

−B̂′
b
,.
denote the

submatrix of Ab where the rows corresponding to unit constituents in B̂′
b have been removed.

Because Âb contains O rows, the proof is complete if the following can be shown:

V ∗(Ab
xb
) = V ∗(Âb

xb
) for all xb ∈ P.

By Lemma 2(v), any subset of unit constituents and any subset of objects are complements

to each other in assignment game Ab. As B̂′
b ⊆ B̂b and O \ xb ⊆ O for any xb ∈ P, Lemma 2(v)

implies

V ∗(Ab)− V ∗(Âb) + V ∗(Ab)− V ∗(Ab
xb
) ≥ V ∗(Ab)− V ∗(Âb

xb
),

which is equivalent to

V ∗(Ab)− V ∗(Âb) ≥ V ∗(Ab
xb
)− V ∗(Âb

xb
).

Because the unit constituents in B̂′
b are optimally unmatched in Ab, V ∗(Ab) = V ∗(Âb) and

the left side of the above inequality is equal to zero. Because removing rows always weakly
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reduces the value of an assignment game, the right side is also equal to zero. It follows that

V ∗(Ab
xb
) = V ∗(Âb

xb
) for all xb ∈ P, and the proof is complete. �

Proof of Theorem 4: (If) Suppose that the allocation problem is such that all buyers and

all sellers are decomposable. Then it is possible to construct a (BO + O) × O matrix A such

that the rows devoted to unit constituents of each agent are those of his decomposition. That

is,

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ab1

Ab2

Ab3

...
AbB

As1 0 0 · · · 0
0 As2 0 · · · 0
0 0 As3 · · · 0
...

...
...

. . .
...

0 0 0 · · · AsS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Abi is the decomposition of the ith buyer and Asj the decomposition of the jth seller.

Observe that A satisfies Definition 1 by construction. Consider a feasible allocation x and

recall that L(A, x) is the set of feasible matchings of A that are isomorphic to x. Notice that

the elements of L(A, x) only differ in the way they assign objects across unit constituents of

the same individual. A best isomorphic matching of x in A, Lx, is one that, for each buyer b

assigns the objects in xb to unit constituents in B̂b optimally and for each seller s assigns the

objects in Os \ xb to unit constituents in Ŝs optimally. (If this were not the case, then another

isomorphic matching would exist that produces a larger value, contradicting that Lx is a best

isomorphic matching.) This implies the first equality signs in each of the following two lines.

V ∗(Ab
xb
) =

∑
r∈B̂b

∑
o∈xb

lxr,o ar,o =
∑
r∈B̂b

∑
o∈O

lxr,o ar,o for all b ∈ B and

V ∗(As
Os\xs

) =
∑
r∈Ŝs

∑
o∈Os\xs

lxr,o ar,o =
∑
r∈Ŝs

∑
o∈O

lxr,o ar,o for all s ∈ S.

Each of the second two equality signs derives from the fact that Lx is isomorphic to x, which

means (i) lxr,o = 0 for all r ∈ B̂b and o ∈ O such that o /∈ xb and (ii) lxr,o = 0 for all r ∈ Ŝs and

o ∈ O such that o /∈ Os \ xs.

Because this is true for any feasible allocation, it also holds for the empty allocation x0 and
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its best isomorphic matching Lx0

:

V ∗(As) =
∑
r∈Ŝs

∑
o∈Os

lx
0

r,o ar,o =
∑
r∈Ŝs

∑
o∈O

lx
0

r,o ar,o for all s ∈ S.

Combining these results with the assumption that all agents are decomposable yields

ub(xb,vb) = V ∗(Ab
xb
) =

∑
r∈B̂b

∑
o∈O

lxr,o ar,o for all b ∈ B and

ks(xs, cs) = V ∗(As)− V ∗(As
Os\xs

) =
∑
r∈Ŝs

∑
o∈O

[lx
0

r,o ar,o − lxr,o ar,o] for all s ∈ S.

That is, Definition 2 is satisfied, and so the allocation problem is a matching problem. �

(Only If) Suppose that a buyer b is not decomposable. Then for any matrix Ab with O unit

constituents of b in its rows and O objects in its columns there exists a feasible allocation x

such that ub(xb,vb) �= V ∗(Ab
xb
). Additionally, for any (BO + O) × O unit constituent-object

assignment game A where the unit constituents of b are represented by the rows of Ab, a best

isomorphic matching Lx of x, optimally assigns objects in xb to unit constituents of b. That is,

∑
r∈B̂b

∑
o∈O

lxr,o ar,o =
∑
r∈B̂b

∑
o∈xb

lxr,o ar,o = V ∗(Ab
xb
) �= ub(xb,vb).

Consequently the allocation problem is not a matching problem.

Likewise, if a seller s is not decomposable, then for any Os × Os matrix As there exists

a feasible allocation x such that ks(xs, cs) �= V ∗(As) − V ∗(As
Os\xs

). Additionally, for any

(BO+O)×O unit constituent-object assignment game A where the unit constituents of s are

represented by the rows of As, Lx, a best isomorphic matching of x, optimally assigns objects

in Os \ xs to unit constituents of s. That is,

∑
r∈Ŝs

∑
o∈O

lx
0

r,o ar,o−lxr,o ar,o =
∑
r∈Ŝs

∑
o∈Os

lx
0

r,o ar,o−
∑
r∈Ŝs

∑
o∈Os\xs

lxr,o ar,o = V ∗(As)−V ∗(Ab
Os\xs

) �= ks(xs, cs),

Thus the allocation problem is not a matching problem. �

Proof of Proposition 2: (Buyers) Let b be a buyer whose payoff function exhibits RDD.

Then there exists a partition {Om}m∈Mb of O such thatOm = {o(1)(Om), o(2)(Om), ..., o(Om)(Om)}

for all m ∈ Mb. For any package x ∈ P, recall that xm ≡ x ∩ Om and let v(i)(xm) :=

ub({o(i)(xm)},vb) be the ith highest stand-alone utility among objects in xm. For all m ∈ Mb,

41



define

Am :=

⎛
⎜⎜⎜⎝

v(1)(Om) v(2)(Om) ... v(Om)(Om)

max{v(1)(Om)− δm,2, 0} max{v(2)(Om)− δm,2, 0} ... max{v(Om)(Om)− δm,2, 0}
...

...
. . .

...
max{v(1)(Om)− δm,O, 0} max{v(2)(Om)− δm,O, 0} ... max{v(Om)(Om)− δm,O, 0}

⎞
⎟⎟⎟⎠

and let

A :=

⎛
⎜⎜⎜⎝
Am1 0 · · · 0
0 Am2 · · · 0
...

...
. . .

...
0 0 · · · Am

Mb

⎞
⎟⎟⎟⎠ .

We prove that b is decomposable by showing that A constitutes a decomposition of b. Because

all other elements are zeroes, for any x ∈ P, the value of Ax (which as may be recalled is the

submatrix of A containing exclusively its columns related to objects in x) is maximized by

separately maximizing the values of all submatrices Am
xm

. That is,

V ∗(Ax) =
∑

m∈Mb

V ∗(Am
xm

).

In order to complete the proof, it remains to show that

V ∗(Am
xm

) =

|xm|∑
i=1

max{ub({o(i)(xm)},vb)− δm,i, 0} for all m ∈ M
b and all x ∈ P.

For some m ∈ Mb and some x ∈ P, consider

Am
xm

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v(1)(xm) v(2)(xm) ... v(|xm|)(xm)

max{v(1)(xm)− δm,2, 0} max{v(2)(xm)− δm,2, 0} ... max{v(|xm|)(xm)− δm,2, 0}
...

...
. . .

...
max{v(1)(xm)− δm,|x|, 0} max{v(2)(xm)− δm,|x|, 0} ... max{v(|xm|)(xm)− δm,|x|, 0}

...
...

. . .
...

max{v(1)(xm)− δm,Om , 0} max{v(2)(xm)− δm,Om , 0} ... max{v(|xm|)(xm)− δm,Om , 0}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Because the discount parameters are nondecreasing (δm,i ≤ δm,j for i < j), the last O−|xm| rows

of Axm are optimally unmatched. Additionally, the max function implies that, for i = 1, ..., |xm|,

the ith row of Am
xm

be optimally matched with the ith column. In this way, the highest value

is matched with the lowest discount, then the second-highest value with the second-lowest

discount, and so on as long as the next value is greater than or equal to the next discount. It is

easy to see that this is optimal once one notices that the problem is isomorphic to the problem

of a Walrasian auctioneer facing unit demand buyers with values v(1)(xm), ..., v(1)(|xm|) and

unit supply sellers with costs δm,1, ..., δm,Om . It follows that

V ∗(Am
xm

) =

|xm|∑
i=1

max{v(i)(xm)− δm,i, 0} ≡

|xm|∑
i=1

max{ub({o(i)(xm)},vb)− δm,i, 0}). �
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(Sellers) Let s be a seller whose payoff function exhibits RDD. Then there exists a partition

{Om,s}m∈Ms of Os such that Om,s = {o(1)(Om,s), o(2)(Om,s), ..., o(Om,s)(Om,s)} for all m ∈ Ms.

For any package x ∈ Ps, recall that xm ≡ x∩Om,s and let k(i)(xm) := ks({o(i)(xm)}, cs) be the

ith lowest stand-alone cost among objects in xm. For all m ∈ Ms, define

Am :=

⎛
⎜⎜⎜⎝

k(1)(Om) k(2)(Om) ... k(Om)(Om)

k(1)(Om) + δm,2 k(2)(Om) + δm,2 ... k(Om)(Om)− δm,2
...

...
. . .

...
k(1)(Om)− δm,O k(2)(Om)− δm,O ... k(Om)(Om)− δm,O

⎞
⎟⎟⎟⎠

and let

A :=

⎛
⎜⎜⎜⎝
Am1 0 · · · 0
0 Am2 · · · 0
...

...
. . .

...
0 0 · · · AmMs

⎞
⎟⎟⎟⎠ .

For any m ∈ Ms, consider

Am
Om,s\xm

=

⎛
⎜⎜⎜⎝

k(1)(Om \ xm) k(2)(Om \ xm) ... k(Om−|xm|)(Om \ xm)

k(1)(Om \ xm) + δm,2 k(2)(Om \ xm) + δm,2 ... k(Om−|xm|)(Om \ xm)− δm,2
...

...
. . .

...
k(1)(Om \ xm) + δm,Om,s k(2)(Om \ xm) + δm,Om,s ... k(Om−|xm|)(Om \ xm) + δm,Om,s

⎞
⎟⎟⎟⎠ ,

the matrix formed by removing all columns related to an object in xm from Am. Because the

discount parameters are nondecreasing (δm,i ≤ δm,j for i < j), the first |xm| rows of Am
Om,s\xm

optimally remain unmatched. Any assignment that matches each of the remaining Om,s−|xm|

rows to one of the Om,s − |xm| columns produces the same value and is therefore optimal. It

follows that

V ∗(Am
Om,s\xm

) =

Om−|xm|∑
i=1

k(i)(Om\xm) +

Om∑
i=|xm+1|

δm,i for all m ∈ M
s and all x ∈ Ps.

Because all other elements are zeroes, for any x ∈ Ps, the value of AOs\x is maximized by

separately maximizing the values of all submatrices Am
Om,s\xm

. That is,

V ∗(AOs\x) =
∑

m∈Ms

V ∗(Am
Om,s\xm

) =
∑

m∈Ms

⎡
⎣Om−|xm|∑

i=1

k(i)(Om\xm) +
Om∑

i=|xm|+1

δm,i

⎤
⎦ for all x ∈ Ps.
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It follows that, for all x ∈ Ps,

V ∗(A)− V ∗(AOs\x) =
∑

m∈Ms

⎡
⎣Om∑

i=1

k(i)(Om) +

Om∑
i=1

δm,i −

Om−|xm|∑
i=1

k(i)(Om\xm) −

Om∑
i=|xm|+1

δm,i

⎤
⎦

=
∑

m∈Ms

|xm|∑
i=1

[k(i)(xm) + δm,i]

≡
∑

m∈Ms

|xm|∑
i=1

[ks(o(i)(xm), cs) + δm,i]

= ks(x, cs). �

Proof of Proposition 3: (Buyers) Consider a buyer b consuming package x ∈ P whose

utility function is such that y and z with y, z ⊆ x and y∩ z = ∅ are strict complements to each

other. That is,

ub(x,vb)− ub(x \ y,vb) > ub(x \ z,vb)− ub(x \ (y ∪ z),vb).

Suppose b is decomposable and let A be a decomposition. Writing Ã := Ax (the matrix

containing only those columns of A that correspond to an object in x) for ease of notation, the

above inequality is equivalent to

V ∗(Ã)− V ∗(Ã.,−y) > V ∗(Ã.,−z)− V ∗(Ã.,−(y∪z)).

The latter inequality states that subsets of objects y and z are complements to each other in

assignment game Ã, which contradicts part (iii) of Lemma 2. �

(Sellers) Consider a seller s producing package x ∈ Ps and whose cost function is such that

y, z ⊆ x with y ∩ z = ∅ are strict complements to each other. Then

ks(x, cs)− ks(x \ ys, cs) < ks(x \ zs, cs)− ks(x \ (y ∪ z), cs).

Suppose s is decomposable and let A be a decomposition. Writing x̃ := x \ (y ∪ z) and

Ã := AOs\x̃, the above inequality is equivalent to

(V ∗(A)− V ∗(Ã.,−(y∪z)))− (V ∗(A)− V ∗(Ã.,−z)) < (V ∗(A)− V ∗(Ã.,−y))− (V ∗(A)− V ∗(Ã))

⇔ V ∗(Ã.,−z)− V ∗(Ã.,−(y∪z)) > V ∗(Ã)− V ∗(Ã.,−y).

The latter inequality states that subsets of objects y and z are complements to each other in

assignment game Ã, which contradicts part (iii) of Lemma 2. �
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