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Abstract

Matching markets such as day care, student exchange, refugee resettlement, and

couples problems involve agents of different sizes, that is agents who require different

amounts of capacity. I study a matching market between agents and objects where the

size of an agent is either one or two. Contrary to canonical models, the set of stable

matchings may be empty. I identify a trade-off for existence: it is always possible to

either bound the instability to a certain number of units per object or to eliminate

waste but the existence of a matching that does both is not guaranteed. I develop

two fairness criteria that lie on either side of this trade-off: unit-stability bounds the

instability and size-stability eliminates waste. I show that size-stability is more desirable

than unit-stability from a welfare point of view.
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1 Introduction

Centralized matching programs have been successfully implemented in various markets, in-

cluding the National Resident Matching Program (Roth, 2003), school choice (Abdulka-

diroglu and Sönmez, 2003), and kidney exchange (Roth, Sönmez, and Ünver, 2004). At first

sight, day care appears to be an ideal market for centralized matching: children (or in fact

their parents) have preferences over day care centers while day care centers have capacity

constraints and rank children according to priorities.1

An important difference between the matching of children to day care centers and students

to schools is that children often attend day care part-time while students always attend school

full-time.2 A place at a day care center can therefore be shared among two or more children

attending on different days. Mathematically, children have different sizes in the sense that

they affect the capacity constraint of a day care center differently depending on whether they

attend part-time or full-time.3

Matching markets with sizes arise in a variety of contexts. Student exchange agreements

between universities, for example those created by the Erasmus program, often contain this

feature. These bilateral agreements allow students from one university to study at the other

for a year or a semester. The home university is responsible for selecting which students

it will send to its partner. Places are often competitive and students may apply for several

destinations, in order of preference. The selection process is a matching market: students have

preferences over partner universities and have different priorities for each of them depending

on the quality of their application. Capacities are determined by the exchange agreement,

which can specify either a maximum number of students that can be selected or a maximum

number of semesters that can be used. In the latter case, a student going for a year uses two

units of capacity.

Agents with different sizes also present challenges in existing models. The National Res-

ident Matching Program (NRMP) has matched medical graduates to residency hospitals in

the United States since 1951. Since 1983, doctors have had the option to apply as couples

1For example, families from a disadvantaged background or families who live in the neighborhood where
the day care center is located often have a higher priority.

2Another potential difficulty with day care matching is that children may enter or exit at any time, giving
the problem a dynamic aspect. The largest intake, however, tends to take place once a year when the older
children start school or kindergarten. Optimizing this static problem has the potential to greatly improve
the way the market operates.

3Capacity constraints can of course vary from one country to another. This example was inspired by the
situation in Australia but Kamada and Kojima (2018) report a different problem in Japan. While part-time
attendance does not appear to be a major concern there, the teacher-child ratio decreases with the child’s
age. Thus, younger children affect the capacities of day care centers more than older ones and can be thought
of as having a larger size.
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and submit preferences over pairs of hospitals (Roth, 1984). A couple requires two positions;

however they may not be at the same hospital. Refugee resettlement (Delacrétaz, Kominers,

and Teytelboym, 2016) constitutes another extension. People accepted as refugees in a given

country are typically resettled across various local areas that provide them with multiple

services (e.g., housing, school places, or training programs). Multidimensional constraints

arise in this problem as families have different service requirements, depending for example

on whether they have children or specific needs.

The aim of this paper is to pin down the implications of introducing sizes and develop

suitable solution concepts. I study the simplest matching model with sizes. Agents (e.g.,

parents, students) have ordinal preferences over objects (e.g., day care centers, host univer-

sities) that are available in multiple identical units (e.g., part-time places in a specific day

care center, semesters on exchange at a specific partner university). For each object, agents

are ranked according to exogenous priorities. Agents can have a size of either one or two:

single-unit agents require one unit of an object (e.g., families placing their child part-time,

students going on exchange for a semester) and double-unit agents require two units of the

same object (e.g., families placing their child full-time or students going on exchange for a

year).

The model – as well as the insights gathered and concepts developed throughout the paper

– can be extended in various ways to fit specific applications. Extensions can follow at least

three directions. First, constraints may take place over several dimensions. Children going

to day care part-time typically attend specific days, for example Monday-Wednesday-Friday

or Tuesday-Thursday. Refugee resettlement involves such multidimensional constraints, each

of which is a service that local areas can provide to refugees. Second, the model can be

extended to the case where agents have preferences over both an object and a number of

units. Students may prefer to go on exchange for a year but, if this is not possible, be willing

to go for only a semester. Third, agents may desire units of different objects. Doctors in a

couple can work in two different hospitals located in the same city. Sizes take different forms

in each of these applications; however they are present in all of them. Designing central

clearing houses for these markets requires an understanding of how sizes affect matching

problems. This paper provides important insights on the subject and serves as a stepping

stone towards developing new solutions for a wide-range of matching applications.

Stability – initially introduced by Gale and Shapley (1962) – is a central concept in

matching theory. In this paper’s model, an agent and an object form a blocking pair of a

given matching if the agent prefers the object to his own and at least the number of units

he requires are either unassigned or assigned to agents with a lower priority. A matching

is stable if it does not have any blocking pair. Stable matchings are desirable for a range
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of reasons that vary depending on the application. In two-sided matching markets, with

strategic agents on both sides, stability constitutes an essential equilibrium criterion. For

instance, in the NRMP, a doctor and a hospital that form a blocking pair have an incentive

to match with one another outside of the matching program; thus an unstable matching

is not at equilibrium. In matching markets with priorities such as school choice, day care,

student exchange, or refugee resettlement, it constitutes a fairness criterion.4 A blocking pair

is unfair in the sense that the agent is not able to get an object even though he has a high

enough priority. Throughout the paper, I treat stability as a fairness criterion; however, the

solution concepts I develop may prove useful to two-sided matching markets as well.

In a matching market where all agents have the same size (e.g., school choice), the set

of stable matchings contains an agent-optimal stable matching (Gale and Shapley, 1962),

that is a stable matching that weakly dominates all other stable matchings. This is no

longer true in the presence of sizes. The set of stable matchings may be empty (Example 1)

and, if nonempty, it may contain multiple agent-undominated stable matchings – that is, a

stable matching not dominated by any other – instead of an agent-optimal stable matching

(Example 2).

I characterize stability using three axioms, each of which constitutes a fairness criterion.

A matching is size envy-free if, whenever an agent prefers an object to his own, all agents

matched to that object have either a higher priority or a smaller size. Size envy-freeness is

a fairness criterion in the sense that any priority violation can be justified by the agents’

different sizes. For any nonnegative integer K, a matching is K-bounded if, whenever an

agent prefers an object to his own, at most K units of the object are either unassigned or

assigned to agents with a lower priority. K-boundedness constitutes a fairness criterion in

the sense that it bounds the number of units that an agent can claim given his priority. Of

particular interest throughout is 1-boundedness, the special case where K = 1 and agents can

claim at most one unit per object. A matching is non-wasteful if, whenever an agent prefers

an object to his own, the object has enough unassigned units for the agent to be matched

to it without removing any other agent. Non-wastefulness constitutes both a fairness and

an efficiency criterion as it ensures that units only remain unassigned if they cannot benefit

any agent. I show that a matching is stable if and only if it is size envy-free, 1-bounded, and

non-wasteful.

I show (Theorem 1) that two of these axioms are incompatible with one another: for any

K, it is possible to construct a market in which there does not exist any K-bounded and non-

wasteful matching. In contrast, there always exists a 1-bounded and size envy-free matching

4Abdulkadiroglu and Sönmez (2003) refer to stability as the elimination of justified envy to highlight this
fairness interpretation.
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as well as a non-wasteful and size envy-free matching. Guided by these results, I develop

two fairness criteria. Unit-stability allows those blocking pairs where a single-unit agent

prefers an object to his own and exactly one unit of that object is unassigned but precludes

all other blocking pairs. It is characterized by 1-boundedness and size envy-freeness, as such

it relaxes stability but guarantees existence and provides a clear fairness criterion. Size-

stability allows those blocking pairs where a double-unit agent prefers an object to his own

and single-unit agents with a lower priority are matched to that object. It is characterized

by non-wastefulness and size envy-freeness, and therefore it also guarantees existence and

provides a clear fairness criterion, though a less stringent one than stability.

These results point to an important trade-off that market designers face in matching

markets with sizes. It is possible to either bound the instability to a limited number of units

per object – in fact, it is possible to limit it to one unit per object – or to eliminate waste, but

not both. Unit-stability achieves the former and size-stability the latter. Which of the two

fairness criteria is more desirable depends on each application and the relative importance

of respecting priorities versus eliminating waste. For example, Delacrétaz, Kominers, and

Teytelboym (2016) argue that waste can be tolerated in refugee resettlement while respecting

priority is key and develop a solution concept that, in this paper’s model, is unit-stable

(though their fairness criterion is slightly less permissive). On the other hand, universities

may prefer to send lower-priority students on exchange for a semester rather than to leave

some positions unused.

In a matching market with priorities, a natural solution concept is to maximize welfare

subject to a suitable fairness criterion. Undominated unit-stable matchings (UUSMs),

that is unit-stable matchings that are not dominated by any other unit-stable matchings,

achieve this goal and, therefore, constitute a natural solution concept for applications where

waste can be tolerated. Undominated size-stable matchings (USSMs) – size-stable

matchings that are not dominated by any other size-stable matchings –, in contrast, may be

unfair to double-unit agents because there does not exist any bound on how many single-unit

agents may violate their priority. I propose to refine the solution concept by only considering

those USSMs that are d-undominated, that is undominated not only in general but also

from the point of view of double-unit agents. While the priority of double-unit agents may

still be violated, they are compensated by the fact that the matching is as good as possible

for them: any size-stable matching that makes a double-unit agent better-off makes another

one worse-off.

Relaxing stability allows recovering existence but also matters from a welfare point of

view. Any fairness criterion limits the set of matchings that may be selected and, as such,

may have consequences on welfare. Thus, a fairness criterion that is more permissive than
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stability can allow recovering higher-welfare matchings. I formalize this by introducing set

domination to compare sets of matchings. Set of matching M1 weakly set dominates set

of matchings M2 if every matching in M2 is weakly dominated by at least one matching

in M1 and no matching in M1 is strictly dominated by any matching in M2.
5 The sets of

undominated unit-stable and size-stable matchings both dominate the set of undominated

stable matchings, a consequence of the fact that both fairness criteria relax stability. Per-

haps surprisingly, I show that the set of undominated size-stable matchings set dominates

the set of undominated unit-stable matchings (Theorem 2). This result adds an additional

consideration to the trade-off between bounding instability and eliminating waste: the latter

is more costly from a welfare point of view.

Related Literature

An important body of literature provides “nearly” stable solutions in matching markets

with sizes. Biró and McDermid (2014) study an extension of the present model where agents’

sizes lie between 1 and n ≥ 2. They show that, if the quota of each object is increased or

decreased by at most n − 1 units, then an algorithm exists that finds a stable matching.6

Dean, Goemans, and Immorlica (2006) and Yenmez (2018) each propose an algorithm based

on deferred acceptance that are achieves these bounds. The matching produced by Dean,

Goemans, and Immorlica’s (2006) algorithm is stable if the capacity of each object is increased

by at most n − 1 units7 and the one produced by Yenmez’ (2014) algorithm is stable if the

capacity of each object is decreased by at most n−1 units.8 In the present model, n = 2 so a

stable matching can be obtained by adding or removing one unit. Nguyen and Vohra (2018)

derive a similar result for the couples problem. Increasing or decreasing the quota of each

object (hospital) by at most two units allows finding a market where a stable matching exists.

In addition, the sum of quotas does not decrease and increases by at most four units. In

this paper, I assume strict quotas and do not consider solutions that require increasing them.

However, as I show in the appendix (Proposition 7), the existence of unit-stable matchings

implies that of matchings which can be made stable by discarding at most one unit per object

5Strict set domination obtains if, in addition, the two sets are distinct.
6In the context of minimum quotas, Fragiadakis and Troyan (2017) propose an algorithm that finds a

stable matching by removing some units of capacity.
7Cseh and Dean (2016) adapt that algorithm in order to find a matching that minimizes the total number

of units that need to be added.
8Yenmez (2018) studies a model of college admissions with contracts. Sizes are introduced by the fact

that students can take up either a full place or a fraction 1/n of a place. Stability obtains by assuming that
colleges do not need to fill up their capacity, instead they reject students as soon as they have less than a full
place available. This can be translated into the model of Dean, Goemans, and Immorlica (2006) and Biró
and McDermid (2014) by letting a full place be equal to n units of capacity. Then, a college stops filling up
its quota once it has n− 1 or less units available.
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but the converse does not hold.

As mentioned above, the National Resident Matching Program and refugee resettlement

are two real-world matching markets with sizes that have been studied and each of them

constitutes a different extension of the model studied in this paper. As a result, the trade-off

between bounding instability and eliminating waste is relevant for these two markets. An

“engineering” solution was successfully implemented for the NRMP (Roth and Peranson,

1997, 1999; Roth, 2003) and, though existence is not guaranteed, it has found a stable

matching every year since its inception in 1983.9 This may of course not be the case for other

matching markets with sizes and the focus of the present paper is on existence in general.

Delacrétaz, Kominers, and Teytelboym (2016) propose envy-freeness as a fairness criterion

and show the existence of an agent-optimal envy-free matching in their model (of which the

model studied in this paper is a special case). Kamada and Kojima (2018) provide a sufficient

and almost necessary condition on capacity constraints for the existence of an agent-optimal

envy-free matching, which is satisfied by the setup of Delacrétaz, Kominers, and Teytelboym

(2016) and, consequently, this paper.10 A matching is envy-free if, whenever an agent prefers

an object to his own, all agents matched to that object have a higher priority. In the absence

of sizes, the agent-optimal envy-free matching is the agent-optimal stable matching. In the

model studied in this paper, the agent-optimal envy-free matching is unit-stable but not

necessarily undominated. The reason is that a double-unit agent can envy a single-unit

agent in a unit-stable matching, hence unit-stable matchings are not necessarily envy-free.

Stable matchings are not necessarily envy-free either for the same reason.

Last, several papers have studied similar applications to those mentioned in this paper

but do not consider agents of different sizes. Kennes, Monte, and Tumennasan (2014) study

the assignment of children to day care centers in a dynamic context, taking into account the

fact that children may move from one center to another once they have secured a place. The

authors do not consider the part-time feature of day care and effectively build a dynamic

extension of the school choice model, framed in the context of day care. Considering the

dynamic aspect of day care is certainly worthwhile; however the success encountered by the

reforms of school choice systems across the world suggests that taking care of that static

problem can already greatly improve the way the market operates. A dynamic model that

caters for agents of different sizes could then lead to further improvements. Dur and Ünver

9Potential explanations for the existence of a stable matching in practice include the market’s large size
and relatively small proportion of couples, the fact that each doctor lists only a small fraction of the hospitals
(and vice-versa), and the fact that preferences on both sides are correlated. These conditions may of course
vary from one application to another.

10Delacrétaz, Kominers, and Teytelboym (2016) and Kamada and Kojima (2018) respectively use the terms
quasi-stable and fair for what I call envy-free, following Roth and Wu (2018).
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(2019) consider a different aspect of student exchange.11 Their emphasis lies on the balance

of students between the two partners and its impact on exchange agreements in a dynamic

environment. Instead, I take the terms of the agreements as given and focus on the univer-

sity’s decision about which students it will send to its partners. Sönmez (2013) and Sönmez

and Switzer (2013) study a matching market between cadets and branches in the American

Army. A length of time is specified for every matched pair, which is somewhat reminiscing

of children attending day care part-time or full time, or of students going on exchange for

a semester or a year. The two setups, however, do not resemble one another beyond the

fact that they model a matching market. The duration of a contract between a cadet and

a branch is designed to give cadets an incentive to commit for a longer period and does not

impact the number of cadets with which each branch may be matched. Budish and Cantil-

lon (2012) and Kojima (2013) study the matching of college students to classes. Students

attend multiple (typically four) classes but student preferences over classes are assumed to

be responsive, which ensures the existence of a student-optimal stable matching.

The remainder of the paper is organized as follows. Section 2 formally presents the model.

Section 3 defines stability and characterizes it as the combination of three axioms, two of

which are incompatible with one another. Section 4 introduces unit- and size-stability as

fairness criteria and characterizes each of them as the combination of two of the three axioms

that make up stability. Section 5 compares the proposed solution concepts in terms of welfare

and Section 6 concludes. The appendix contains all proofs and some additional results.

2 Model

There are a set A of agents and a set O of objects. Each object o ∈ O is available in

qo ≥ 1 identical and indivisible units. I refer to qo as the quota of object o and define the

quota vector q to be the |O|-dimensional vector containing all quotas. The set of agents is

partitioned into two subsets S and D. Agents in S are the single-unit agents and require

one unit. Agents in D are the double-unit agents and require two units of the same

object.12 Define wa ∈ {1, 2} such that wa ≡ 1 if a ∈ S and wa ≡ 2 if a ∈ D to be the

size of agent a. The size vector w is the |A|-dimensional vector containing the size of all

11Dur and Ünver (2019) call this tuition exchange.
12In school choice, agents are students, objects are schools, and units are seats in a school. All students are

single-unit agents. In day care, agents are children (or their parents), objects are day care centers and units
are part-time places in a center. Single-unit agents are children who require a part-time place and double-unit
agents are children who require a full-time place. In student exchange, agents are students, objects are host
universities, and units are places available at a given host university. Single-unit agents are students who
want to go on exchange for a semester and double-unit agents are students who want to go on exchange for
a year.
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agents. I assume the existence of a null object, denoted ∅, with a large enough quota to

accommodate all agents: q∅ =
∑

a∈Awa = 2|D|+ |S|.13

Agents have strict, transitive, and ordinal preference relations over all objects. The

preference relation of agent a is denoted �a and o �a o′ signifies that agent a prefers object

o to object o′. The weak preference relation o �a o′ means that either o �a o′ or o = o′.

The preference profile is the |A|-tuple of preference relations �≡ (�a)a∈A containing the

preference relations of all agents. For every object, agents are ranked in order of priority. .o

represents the priority relation of object o and consists of a strict and transitive ranking

of all agents. a .o a
′ signifies that agent a has a higher priority than agent a′ for object o.

The weak priority relation a Do a′ means that either a .o a
′ or a = a′. The priority profile

is the |O|-tuple . ≡ (.o)o∈O containing the priority relations of all objects.14 A market is a

tuple 〈A,O,�,.,w,q〉.

Definition 1. A matching is a correspondence µ : A ∪ O → A ∪ O such that, for all

(a, o) ∈ A×O,

(i) µ(a) ∈ O,

(ii) µ(o) ⊆ A,

(iii) µ(a) = o if and only if a ∈ µ(o), and

(iv)
∑

a′∈µ(o)wa′ ≤ qo.

Let M denote the set of all matchings. Notice that Definition 1, which is otherwise

standard, includes feasibility (part (iv)). The only matchings considered are those that are

feasible in the sense that every object has enough units available to assign to all agents

matched to it.

3 Stability

3.1 Definition

Given a matching µ, let µ̂a(o) ≡ {a′ ∈ µ(o) | a′ .o a} be the set of agents who are matched to

object o at µ and have a higher priority than agent a for that object. Agent a has a claim

13This is without loss of generality, the null object can simply represent the possibility for an agent to
remain unmatched.

14In order to keep the model as simple as possible, it is assumed that even the agent with the lowest priority
can get an object so long as other agents do not compete for it. This assumption is natural in a model where
the focus lies on agent welfare and without loss of generality since an eligibility threshold under which an
agent cannot be matched to an object can be introduced by ranking the objects after the null one in the
agent’s preference relation.
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to n units of object o at matching µ if o �a µ(a) and
∑

a′∈µ̂a(o)wa′ ≤ qo−n; that is, a prefers

o to his match and at least n units of o are either unassigned or assigned to an agent with a

lower priority.

Definition 2. (a, o) ∈ A×O is a blocking pair of matching µ ∈M if a has a claim to wa

units of o at µ.

In words, a single-unit agent s and an object o form a blocking pair if s prefers o to his

current match and at least one unit of o is either unassigned or assigned to an agent with a

lower priority. A double-unit agent d and an object o form a blocking pair if d prefers o to

his current match and at least two units of o are either unassigned or assigned to an agent

with a lower priority.15

Definition 3. A matching is stable if it does not have any blocking pairs.

In the absence of double-unit agents, Definition 3 is equivalent to the standard definition

of stability (see, e.g., Gale and Shapley (1962) or Abdulkadiroglu and Sönmez (2003)). Intro-

ducing double-unit agents requires an element of caution as a one-unit claim is not enough to

conclude that the agent’s priority is violated. Double-unit agents can only be assigned two

units and, therefore, a blocking pair only forms when they are able to claim at least two units

of an object. This definition is consistent with the way stability has been defined in related

models (see, e.g., McDermid and Manlove (2010), Biró and McDermid (2014), or Roth and

Peranson (1999)).

Of particular interest are those stable matchings that are undominated in terms of agent

welfare. Domination is a partial order on the set of matchings M : for any two matchings

µ, ν ∈ M , µ dominates ν if µ(a) �a ν(a) for all a ∈ A and µ(a) �a ν(a) for some a ∈ A. In

words, µ dominates ν if it makes all agents weakly better-off and at least one agent strictly

better-off.16 I write µ � ν if µ dominates ν and µ � ν if µ weakly dominates ν, that is if

µ � ν or µ = ν. The set of undominated stable matchings (USMs), denoted MUS,

contains all stable matchings that are not dominated by any other stable matching. If that

set contains exactly one element, I refer to it as the optimal stable matching.17

15These units may be both unassigned, both assigned to the same lower-priority agent, assigned to two
different lower-priority agents, or one may be unassigned while the other is assigned to a lower-priority agent.

16This criterion is often referred to as Pareto domination.
17These are often referred to as the agent-undominated stable matchings and the agent-optimal stable

matching. Since there is no risk of confusion, I drop the reference to agents throughout the paper.
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3.2 Preliminary Results

A classical result in matching theory is that, absent sizes, the set of stable matchings is

nonempty and contains an optimal stable matching (Gale and Shapley, 1962).18 As I show

next, these results do not hold when agents have different sizes. As was first recognized by

McDermid and Manlove (2010), a stable matching may not exist in this setup. Example 1

provides a market without stable matching.

Example 1 (No Stable Matchings). Let S = {s1, s2}, D = {d1}, O = {o1, o2, ∅}, and

(qo1 , qo2 , q∅) = (2, 1, 4). The preferences and priorities are given below.

s1 s2 d1 o1 (2) o2 (1) ∅ (4)

o1 o2 o1 s2 s1
...o2 o1 ∅ d1 s2

∅ ∅ o2 s1 d1

I show that the market presented in Example 1 does not have any stable matchings. If d1

is matched to o1, then s1 is not by feasibility. As s1 has the highest priority for o2, a blocking

pair is formed unless he is matched to it. In that case, however, s2 is unmatched and forms

a blocking pair with o1. If d1 is not matched to o1, s2 is, as otherwise (d1, o1) constitutes a

blocking pair. Then, s2 and o2 form a blocking pair unless s1 is matched to o2. In this case,

however, (s1, o1) is a blocking pair.

Next, Example 2 shows that a market may have multiple undominated stable matchings.

While it is a result one might expect, to the best of my knowledge, it has not been formally

shown for the model studied in this paper.

Example 2 (Multiple USMs). Let S = {s1, s2}, D = {d1, d2}, O = {o1, o2, ∅}, and (qo1 , qo2 ,

q∅) = (2, 2, 6). The preferences and priorities are given below.

s1 s2 d1 d2 o1 (2) o2 (2) ∅ (6)

o1 o2 o1 o2 s2 s1

...
o2 o1 ∅ ∅ d1 d2

∅ ∅ o2 o1 s1 s2

d2 d1

The market presented in Example 2 has two undominated stable matchings:

µ ≡

(
s1 s2 d1 d2

o2 o2 o1 ∅

)
and µ′ ≡

(
s1 s2 d1 d2

o1 o1 ∅ o2

)
.

18In fact, the set forms a lattice (Roth and Sotomayor, 1990).
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First, suppose the existence of a stable matching in which d1 is matched to o1. Feasibility

directly implies that no one else is, so s1 is not matched to his first preference. As he has

the highest priority for o2, his second preference, stability dictates that he be matched to it.

By feasibility, this in turns implies that d2 is matched to the null. Finally, s1 and o2 form

a blocking pair unless they are matched together since, in that case, s1 would be matched

to a less-preferred object one unit of o2 would be unassigned. It follows that µ is the only

stable matching (if any) in which d1 is matched to o1. I now show that µ is indeed stable.

s1 is matched to his second preference but does not have a claim to his first one, o2, as both

units of that object are assigned to the higher-priority agent d1. d1 is also matched to his

second preference; however he only has a 1-unit claim to his first preference, o1, as one unit

of that object is assigned to the higher-priority agent s2. Consequently, µ is the unique stable

matching in which d1 is matched to o1.

Second, suppose the existence of a stable matching in which d1 is not matched to o1.

As he finds ∅ �d1 o2, d1 is matched to the null in any such matching. In addition, (d1, o1)

constitutes a blocking pair unless s2 is matched to o1. In turn, stability dictates that d2 be

matched to o2 as, otherwise, s2 and o2 form a blocking pair. Finally, s1 has a claim to his

first preference, o1, unless he is matched to it. Then, no matching other than µ′ is stable and

matches d1 to an object other than o1. An analogous reasoning to the one above shows that

µ′ is stable.

It follows that the market presented in Example 2 has exactly two stable matchings: µ

and µ′. As µ favors s1 and d2 while µ′ favors s2 and d1, they are both undominated stable

matchings. The following proposition summarizes these preliminary results.

Proposition 1. The set of stable matchings may be empty or contain multiple undominated

stable matchings.

Since domination is a partial order on the set of (stable) matchings, there exists at least

one undominated stable matching if and only if the set of stable matching is nonempty.

3.3 Characterization

I next introduce three axioms that characterize stability and are crucial to the rest of the

analysis. Given a matching µ, agent a envies agent a′ at µ if µ(a′) �a µ(a) and a.o a
′. That

is, a envies a′ if he would prefer to be matched to µ(a′) and has a higher priority for it. A

matching is envy-free if no agent envies any other agent. Notice that stable matchings do

not necessarily preclude envy because a double-unit agent can have a one-unit claim to an

object matched to one single-unit agent with a lower priority. The two stable matchings of

Example 2 are not envy-free since in each of them a double-unit agent envies a single-unit
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agent.19 In order to account for this possibility, the first axiom adapts envy-freeness to an

environment with sizes.

Axiom 1. A matching µ is size envy-free if, whenever an agent a envies another agent a′

at µ, wa > wa′.

In words, double-unit agents only envy single-unit agents and single-unit agents do not

envy anyone. This constitutes a fairness criterion in the sense that if an agent’s priority is

violated, this can be justified by his larger size. The second axiom bounds the size of claims

that may exist at a given matching.

Axiom 2. For any nonnegative integer K = 0, 1, 2, . . ., a matching µ is K-bounded if there

does not exist any K + 1-unit claim at µ.

If a matching is K-bounded, every agent has the assurance that at most K units of an

object he prefers to his own are either unassigned or assigned to agents with a lower priority.

This constitutes a fairness criterion as a matching may be seen as “reasonably fair” if only a

small proportion of the units available are not assigned to the highest-priority agents. The

third and last axiom is a common property in matching theory.

Axiom 3. A matching µ is non-wasteful if, for any agent-object pair (a, o) such that

o �a µ(a),
∑

a′∈µ(o)wa′ > qo − wa.

Waste refers to a particular kind of blocking pair where the agent can be matched to

the object without displacing any other agent; as such, non-wastefulness constitutes both

a fairness and an efficiency criterion. The next result formalizes the relationship between

stability and the above axioms.

Proposition 2. A matching is stable if and only if it is size envy-free, 1-bounded, and non-

wasteful.

3.4 Existence Results

A direct consequence of the possible nonexistence of stable matchings (Proposition 1) and

the above characterization (Proposition 2) is that the existence of a matching satisfying all

19This of course does not apply when all agents have the same size, in which case a matching is stable
if and only if it is envy-free and non-wasteful (Axiom 3), see, e.g., Roth and Wu (2018). In a model with
general capacity constraints (of which the model studied in this paper in a special case), Kamada and Kojima
(2018) define stability to be the combination of envy-freeness and non-wastefulness. For the purpose of the
current paper, this does not appear to be the natural definition as it would preclude the two stable matchings
of Example 2. In fact, as noted in Section 3.1, the definition used here is consistent with the literature on
matching markets with sizes and couples.
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three axioms is not guaranteed. The next result shows that this incompatibility arises from

one pair of axioms.

Theorem 1.

(i) For every K ≥ 0, the set of K-bounded, and non-wasteful matchings may be empty;

(ii) The set of size envy-free and 1-bounded matchings is nonempty;

(iii) The set of size envy-free and non-wasteful matchings is nonempty.

Theorem 1 points to a key trade-off in matching markets with sizes. On the one hand,

if waste is to be completely eliminated, then it is not possible to bound the size of claims:

an agent may prefer an object to his own while an arbitrary number of units of that object

are assigned to lower-priority agents. On the other hand, if waste can be tolerated, then

claims can be bounded to one unit per object: if an agent prefers an object to his own,

then all but one units of that object are assigned to higher-priority agents. In Section 4, I

propose two solution concepts that lie on either side of this trade-off. Which is more desirable

depends on the application at hands. Delacrétaz, Kominers, and Teytelboym (2016) argue

that waste is tolerable in refugee resettlement as groups of refugees (agents) arrive regularly

and any unused capacity can benefit the next group. Goodwill from local areas (objects) is

on the other hand of the utmost importance as they are the one providing service capacities

(quotas). As I show below, they propose a solution that, in the model studied in this paper,

is size envy-free and 1-bounded. At the other end of the spectrum, student exchange is a

“one-shot” market in the sense that the number of students that a university can send to

its partners does not increase if some places were not used in previous years. A university’s

exchange office may then prefer to send a lower quality applicant rather than no one at all.20

Eliminating waste may also constitute a key requirement in a market with agents on both

sides, such as the National Resident Matching Program (NRMP). Participants may rapidly

lose trust in the matching system if a hospital does not fill a position that eligible applicants

would be willing to take. The problem may be less severe if the hospital has been able to

fill the position with a lower-quality applicant. Day care lies somewhere in between. While

children may join at any point, the largest intake takes place once a year when older children

go to school. At this point, it may be tolerable to underuse the capacity of day care centers

in the hope that these places be filled with children who apply later. The cost of doing so

20This may of course depend on a university’s specific circumstances. Dur and Ünver (2019) argue that
some agreements specify that each partner must send approximately the same number of students over a
moving time window. Such a feature could motivate an exchange office to send fewer students one year
in order to send more of them later on. In practice, this requirement appears in the United States but is
uncommon outside. For example, it does not play a role in Erasmus agreements.
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Algorithm 1: Priority-Focused Deferred Acceptance (PFDA)

Round i ≥ 1:

Every agent a proposes to his most preferred object that has not rejected him.

Object o rejects the proposal of agent a if a’s size added to the sizes of all agents
who have proposed to o in some Round j ≤ i exceeds o’s quota. Otherwise, o
tentatively accepts a’s proposal.

If at least one proposal has been rejected, continue to Round i+ 1. Otherwise,
end and match each agent with the last object to which he proposed.

may however be large as demand typically greatly exceeds supply. Whether it outweighs the

benefit of limiting the size of claims depends on specific circumstances that are beyond the

scope of this paper. While the formal proof can be found in the appendix, the remainder of

this section is devoted to providing intuition for Theorem 1.

Delacrétaz, Kominers, and Teytelboym (2016) and Kamada and Kojima (2018) propose

envy-freeness21 as a fairness criterion. Their results imply the existence of an optimal envy-

free matching, which can be found using the Priority-Focused Deferred Acceptance (PFDA)

algorithm from Delacrétaz, Kominers, and Teytelboym (2016). I present in Algorithm 1 a

version of PFDA adapted to the model studied in this paper. The PFDA algorithm follows

a similar structure to Gale and Shapley’s Deferred Acceptance (DA) algorithm with the

difference that an object rejects an agent if his size added to those of higher-priority agents

who have already proposed to the object (in the current round or a previous one) exceeds

the object’s quota. As a result, an object may reject a single-unit agent even though one

unit remains unassigned so the matching produced may waste up to one unit of each object;

nevertheless, it satisfies the other two axioms.

Proposition 3. The optimal envy-free matching is size envy-free and 1-bounded.

Proposition 3 directly implies part (ii) of Theorem 1. Another simple algorithm produces

a matching that satisfies the other compatible pair of axioms. The Two-Stage Deferred

Acceptance (TSDA, Algorithm 2) first considers single-unit agents and calculates the optimal

stable matching for them. (Since all agents have the same size that matching exists and can be

21As noted in the introduction (footnote 10), Delacrétaz, Kominers, and Teytelboym (2016) and Kamada
and Kojima (2018) respectively use the terms quasi-stable and fair.
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Algorithm 2: Two-Stage Deferred Acceptance (TSDA)

Stage 1:

Leave double-unit agents unmatched and calculate the optimal stable matching
for single-unit agents.

Stage 2:

Remove single-unit agents and the units they are assigned and calculate the
optimal stable matching for double-unit agents in that modified market.

calculated using Gale and Shapley’s (1962) DA algorithm.) Second, the algorithm considers

double-unit agents and the units that have not been assigned to a single-unit agent and

calculates the optimal stable matching for that modified market. Since the optimal stable

matching is calculated in each stage, no unit is wasted and agents of the same size do not envy

one another. In addition, single-unit agents do not envy double-unit agents since the latter

may only be assigned units that the former do not want. The next result follows naturally.

Proposition 4. The TSDA algorithm produces a size envy-free and non-wasteful matching.

Proposition 4 directly implies part (iii) of Theorem 1. Part (i) is shown by counterexample.

In order to provide some intuition for this impossibility result, I present below an example

that covers the case where K = 1. It can be extended to arbitrarily large K’s, see Example

5 in the appendix.

Example 3 (No 1-bounded non-wasteful Matching). Let S = {s1, ŝ1, ŝ2}, D = {d1}, O =

{o1, o2, ∅}, and (qo1 , qo2 , q∅) = (2, 2, 5). The preferences and priorities are given below.

s1 ŝ1 ŝ2 d1 o1 (2) o2 (2) ∅ (5)

o1 o2 o2 o1 ŝ1 s1

...
o2 o1 o1 ∅ ŝ2 ŝ1

∅ ∅ ∅ o2 d1 ŝ2

s1 d1

It needs to be shown that every non-wasteful matching in Example 3 has a 2-unit claim.

If d1 is matched to o1, then feasibility dictates that none of the single-unit agents be matched

to o1 and at least one of them be matched to ∅. If s1 is matched to ∅, he has a 2-unit claim
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to o2 as he has the highest priority for that object. If either ŝ1 or ŝ2 is matched to ∅, he

has a 2-unit claim to o1 as both units of that object are assigned to d1, who has a lower

priority. If d1 is matched to o2, he has a claim to at least two unassigned units of ∅, making

the matching wasteful. It follows that d1 is matched to ∅ in any 1-bounded and non-wasteful

matching. In that case, d1 has a 2-unit claim to o1 unless at least one of ŝ1 or ŝ2 is matched

to that object. That agent has a claim to an unassigned unit of o2 unless the other two

single-unit agents are matched to o2. The matching obtained is wasteful since one unit of o1

is unassigned and s1 prefers o1 to o2. Consequently, there does not exist any 1-bounded and

non-wasteful matching in Example 3.

4 Two Solution Concepts

In this section, I propose two relaxations of stability – unit-stability and size-stability – that

lie on either side of the trade-off identified by Theorem 1. The motivation is two-fold. First,

an alternative solution concept is required to cater for instances where the set of stable

matchings is empty. I show that the set of unit-stable matchings and the set of size-stable

matchings are always nonempty. Second, stability is a rather restrictive fairness criterion,

which can have important consequences on welfare. For example, Abdulkadiroğlu, Pathak,

and Roth (2009) study the New-York high-school match, which selects the student-optimal

stable matching, and show that on average 4,000 students could be made better-off each

year without making any student worse-off.22 Therefore, a suitable but less stringent fairness

criterion is valuable from a welfare points of view. I argue that both solution concepts provide

a clear fairness criterion and show that they both lead to welfare gains over stability. Perhaps

surprisingly, I show that size-stability, which eliminates waste (Axiom 3) has better welfare

properties than unit-stability, which bounds instability in the sense of Axiom 2.

4.1 Unit-stability

Definition 4. (a, o) ∈ A×O is a unit blocking pair of matching µ ∈M if it is a blocking

pair of µ and either (i) a ∈ D, (ii)
∑

a′∈µ(o)wa′ 6= qo − 1, or (iii)
∑

a′∈µ̂a(o)wa′ 6= qo − 1.

In words, a single-unit agent s and an object o form a unit blocking pair if s prefers o

to his current match and either at least one unit of o is assigned to an agent with a lower

priority or at least two units of o are an unassigned. The definition does not change for

22In the school choice context, despite the fact that stable matchings are guaranteed to exist, several
relaxations of stability have been proposed in order to improve welfare, see, e.g., Alcalde and Romero-Medina
(2015), Ehlers and Morrill (2018), and Troyan, Delacrétaz, and Kloosterman (2018).
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double-unit agents. Definition 4 strengthens the definition of blocking pair by ruling out the

case where a single-unit agent prefers an object to his own while exactly one unit of that

object is unassigned and all others are assigned to higher-priority agents.

Definition 5. A matching is unit-stable if it does not have any unit blocking pairs.

Unit-stability relaxes stability by allowing one specific type of blocking pairs. Since it

rules out all other blocking pairs, unit-stability remains a clear fairness criterion. In fact, it

is characterized by two of the three axioms that make up stability.

Proposition 5. A matching is unit-stable if and only if it is size envy-free and 1-bounded.

Propositions 3 and 5 directly imply that the PFDA algorithm produces a unit-stable

matching and, therefore, the set of such matchings is nonempty. In Example 1, which does

not have any stable matching, there are three unit-stable matchings:

µ ≡

(
s1 s2 d1

o1 o1 ∅

)
, µ′ ≡

(
s1 s2 d1

o2 o1 ∅

)
, and µ′′ ≡

(
s1 s2 d1

∅ o1 ∅

)
.

µ′′ has three blocking pairs: (s1, o1), (s1, o2), and (s2, o2). One unit of the o1 is unassigned

and the other is assigned to s2, who has a higher-priority than s1; therefore, (s1, o1) is not

a unit blocking pair. (Formally,
∑

a∈µ(o1)wa =
∑

a∈µ̂s1 (o1)
wa = ws2 = 1 = qo1 − 1.) Neither

(s1, o2) nor (s2, o2) is a unit blocking pair since the unique unit of o2 is unassigned. (Formally,∑
a∈µ(o2)wa =

∑
a∈µ̂s1 (o2)

wa =
∑

a∈µ̂s2 (o2)
wa = 0 = qo2 − 1.) Therefore, µ′′ is unit-stable. µ

and µ′ are also unit-stable as they each have one of these blocking pairs, which for the same

reason is not a unit blocking pair.

To see that these are the only unit-stable matchings, consider an alternative matching

ν. If ν(s2) = ∅, (s2, o1) is a unit blocking pair since s2 has a claim to both units of o1

(
∑

a∈µ̂s2 (o1)
wa = 0 6= 1 = qo1 − 1). If ν(s2) = o2, then ν(d1) = o1 as otherwise (d1, o1) is a

blocking pair and d1 ∈ D implies it is a unit blocking pair. Then, ν(s1) = ∅ so (s1, o2) is a

blocking pair. Since the unique unit of o2 is matched to lower-priority agent s2 (
∑

a∈µ(o2)wa =

ws2 = 1 6= 0 = qo2 − 1), it is a unit blocking pair and ν is not unit-stable. It follows that

ν(s2) = o1, which directly implies that ν(d1) = ∅. Depending on ν(s1), this leaves three

options: µ, µ′, and µ′′.

Notice that welfare differs across the three matchings. While µ(s2) = µ′(s2) = µ′′(s2) = o1

and µ(d1) = µ′(d1) = µ′′(d1) = ∅, µ(s1) = o1 �s1 µ′(s1) = o2 �s1 µ′′(s1) = ∅. Therefore,

µ dominates µ′ and µ′ dominates µ′′. Given a fairness criterion, it is natural to maximize

welfare under the constraint that the criterion is satisfied. Therefore, the natural solution

concept here is an undominated unit-stable matching (USSM), that is a unit-stable
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Round 1 Round 2 Round 3 Round 4
s1→ o1 7 s1→ o2 3 s1→ o2 3 s1→ o2 3

s2→ o2 3 s2→ o2 7 s2→ o1 3 s2→ o1 3

d1→ o1 3 d1→ o1 3 d1→ o1 7 d1→ ∅ 3

Table 1: PFDA mechanism on Example 1.

matching that is not dominated by any other unit-stable matching. Since the set of unit-

stable matchings is nonempty and domination is a partial order on the set of matchings,

the set of undominated unit-stable matchings, denoted MUUS, is nonempty. In the case

of Example 1, µ is the only such matching. In other cases, there may be multiple ones,

for instance one can verify that the two stable matchings of Example 2 are also the two

undominated unit-stable matchings.

Table 1 displays the steps of the PFDA algorithm on Example 1 and shows that it pro-

duces the dominated unit-stable matching µ′. The reason is that envy-freeness is a stronger

requirement than size envy-freeness since it precludes situations where a double-unit agent

envies a single-unit agent. As the PFDA algorithm produces an envy-free and 1-bounded

matching, replacing envy-freeness by size envy-freeness may allow finding additional match-

ings, which may dominate it. This is the case of µ, which is unit-stable but not envy-free:

s1 is matched to o1 even though d1 prefers o1 to his object (∅) and has a higher priority

than s1 for o1. Both solution concepts limit claims to one unit per object at the price of

potentially creating waste. Which one should be used (if any) depends on the application at

hand. Envy-freeness strictly respects priority as it precludes any violation, even those that do

not create a blocking pair (when a double-unit agent envies a single-unit agent) Delacrétaz,

Kominers, and Teytelboym (2016) argue that this is very important in refugee resettlement

and follow that approach. In other applications, welfare concerns may take precedence. For

example, it may well be acceptable for a part-time child to attend a day care center even

though a full-time child with a higher priority has not received a place.

4.2 Size-stability

Definition 6. (a, o) ∈ A×O is a size blocking pair of matching µ ∈M if it is a blocking

pair of µ and either (i) a ∈ S or (ii) 2 · |µ̂a(o) ∩D|+ |µ(o) ∩ S| ≤ qo − 2.

A single-unit agent and an object form a size blocking pair if they form a blocking pair.

A double-unit agent d and an object o form a size blocking pair if d prefers o to his current

match and two units of o are either unassigned or assigned to double-unit agents with a lower

priority. Definition 4 strengthens the definition of blocking pair by ruling out the case where
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a double-unit agent envies single-unit agents.

Definition 7. A matching is size-stable if it does not have any size blocking pairs.

Size-stability relaxes stability by disregarding claims of double-unit agents over units held

by single-unit agents. Similarly to unit-stability, size-stability is characterized by two of the

three axioms that make up stability.

Proposition 6. A matching is size-stable if and only if it is size envy-free and non-wasteful.

Propositions 4 and 6 directly imply that the TSDA algorithm produces a size-stable

matching, hence the set of such matchings is nonempty. Since domination is a partial order

on the set of matchings, this guarantees the existence of at least one undominated size-

stable matching (USSM), that is a size-stable matching that is not dominated by any

other size-stable matching and, therefore, maximizes welfare subject to size-stability. In other

words, the set of undominated size-stable matchings, denoted MUSS, is nonempty.23

In Example 1, the unique size-stable matching is

µ∗ ≡

(
s1 s2 d1

o1 o2 ∅

)
.

To see that µ∗ is size-stable, notice that its only blocking pair is (d1, o1); however, (d1, o1) is not

a size blocking pair because one of o1’s two units is assigned to single-unit agent s1. (Formally,

µ̂∗d1(o1) ∩D = ∅ and µ∗(o1) ∩ S = {s1} so 2 · |µ̂∗a(o1) ∩D|+ |µ∗(o1) ∩ S| = 1 > 0 = qo1 − 2.)

To see that µ∗ is the unique size-stable matching, let ν be a size-stable matching. If

ν(d1) = o1, (s1, o2) is a size blocking pair unless ν(s1) = o2 but then ν(s2) = ∅ and (s2, o1)

is a size blocking pair. Therefore, any size-stable matching ν is such that ν(d1) = ∅. (As

∅ �d1 o2, (d1, ∅) is a size blocking pair if ν(d1) = o2.) In that case, (s1, o1) is a size blocking

pair unless ν(s1) = o1 and, in turn, (s2, o2) is a size blocking pair unless ν(s2) = o2 so ν = µ∗.

Size-stability weakens stability but still constitutes a fairness criterion. Waste is elimi-

nated and, while blocking pairs are not entirely precluded, they can only arise in a specific

case: a double-unit agent prefers an object to his own and all but one unit of that objects are

assigned to agents who have either a higher priority or a smaller size. A double-unit agent

may envy agents who have a lower priority but these agents also have a smaller size, which

can provide a justification for the priority violation.

In Example 1, µ∗ is a credible solution: while d1 has a claim to both units of o1, one of

the units is assigned to a smaller-size agent and d1 cannot be matched to o1 without creating

23Note that there may be multiple USSMs. For instance, both stable matchings of Example 2 are USSMs.
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a claim for one of the single-unit agents. Nevertheless, this is not always the case and size-

stability needs to be refined in order to provide a credible fairness criterion. I illustrate this

with a very simple example.

Example 4 (Inadequate USSM). Let S = {s1}, D = {d1}, O = {o1, ∅}, and (qo1 , q∅) =

(2, 3). The preferences and priorities are given below.

s1 d1 o1 (2) ∅ (3)

o1 o1 d1 ...∅ ∅ s1

There are two size-stable matchings in Example 4:

µ ≡

(
s1 d1

∅ o1

)
and µ′ ≡

(
s1 d1

o1 ∅

)
.24

Neither matching dominates the other so both µ and µ′ are undominated size-stable match-

ings; nevertheless, I argue that they are not equal when it comes to fairness. On the one

hand, µ appears to be a natural solution since o1 is matched to the higher-priority agent. On

the other hand, µ′ entirely disregards d1’s priority. This points to a potential problem with

size-stability as a fairness criterion: it does not protect the priorities of double-unit agents in

any way against single-unit agents. In fact, the TSDA algorithm produces an undominated

size-stable matching but completely disregards the priority of double-unit agents who are

only able to get the units that remain unassigned at the end of the first stage. In some cases,

such as Example 1, size-stability requires that some priorities be violated but in others, such

as Example 4, double-unit agents may be unnecessarily harmed if a “bad” USSM is selected.

To remedy the situation, I propose to add to size-stability a requirement about double-

unit agent welfare. d-Domination is a partial order on the set of matchings M :25 for any

two matchings µ, ν ∈ M , µ d-dominates ν if either µ dominates ν or µ(d) �d ν(d) for all

d ∈ D and µ(d) �d ν(d) for some d ∈ D. I write µ �D ν if µ d-dominates ν and µ �D ν if µ

weakly d-dominates ν, that is if µ �D ν or µ = ν. The set of d-undominated size-stable

matchings (d-USSMs), denoted MdUSS, contains all size-stable matchings that are not

d-dominated by any other size-stable matching.

Domination implies d-domination but the reverse is not true; therefore MdUSS is a subset

of MUSS. The idea behind the concept is that a d-undominated size-stable matching is not

24The only other matching in this example matches both agents to the null. That matching is wasteful,
hence it is not size-stable.

25I verify in the appendix (Proposition 8) that d-domination is indeed a partial order over M .
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only undominated in general but also from the point of view of double-unit agents: no other

size-stable matching makes a double-unit agent better-off without making another one worse-

off. Adding this requirement precludes inadequate USSMs, such as µ′ in Example 4. While

double-unit agents may have their priority violated, they are compensated by the fact that

their welfare is maximized under the constraint of size-stability.

5 Welfare Comparison

Undominated unit-stable matchings and d-undominated size-stable matchings offer two al-

ternative solution concepts in matching markets with sizes. Both provide a clear fairness and

efficiency criterion and are characterized by two of the three axioms that make up stability.

Which one should be used depends on the application at hands. If waste can be tolerated

but priorities are important, unit-stability is preferable as it limits claims to at most one

unit per object. If, on the other hand, eliminating waste is more important than respecting

priorities, size-stability is preferable: it ensures that no unit is wasted, at the price of not

bounding the size of claims. In this section, I argue that welfare concerns may speak in favor

of size-stable matchings.

Set Domination is a partial order over the set of all matching subsets 2M .26 For any

two subsets M1,M2 ∈ 2M with M1 6= M2, M1 set dominates M2 if

(i) For all µ2 ∈M2, there exists µ1 ∈M1 such that µ1 � µ2 and

(ii) For all µ1 ∈M1, there does not exist any µ2 ∈M2 such that µ2 � µ1.

In words, M1 set dominates M2 if all matchings in M2 are weakly dominated by at least

one matching in M1 and no matching in M1 is dominated by a matching in M2. I write

M1 �M2 if M1 dominates M2 and M1 �M2 if M1 weakly dominates M2, that is if M1 �M2

or M1 = M2. As the lemma below formalizes, set domination collapses to domination when

both sets contain exactly one element.

Lemma 1. For any µ1, µ2 ∈M , {µ1} � {µ2} if and only if µ1 � µ2.

The three solution concepts studied thus far can be compared in terms of set domination:

Theorem 2. MUSS �MUUS �MUS.

Theorem 2 has important consequences for a market designer concerned with welfare.

The fact that MUUS and MUSS set dominate MUS is not particularly surprising. As was

26I verify in the appendix (Proposition 8) that set domination is indeed a partial order over 2M .
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shown in Sections 4.1 and 4.2, both unit- and size-stability constitute a relaxation of stability,

which allows including higher-welfare matchings among the acceptable ones.27 Nevertheless,

it pins down an important point: using a less stringent fairness criterion matters not only in

term of existence but also when it comes to welfare.28

The fact that MUSS set dominates MUUS is not necessarily obvious at first sight. Recall

that size-stability is characterized by size envy-freeness and non-wastefulness (Proposition

6) and denote by MUSE the set of undominated size envy-free matchings, that is the set of

matchings that are size envy-free and not dominated by any other size envy-free matching.

The key step is to realize that an undominated size envy-free matching is non-wasteful as

otherwise it is possible to match an agent to an object he prefers without affecting any other

agent; the resulting matching is size envy-free and dominates the original one. Therefore,

MUSS = MUSE. Since unit-stability is characterized by size envy-freeness and 1-boundedness

(Proposition 5), all unit-stable matchings are size envy-free and MUSS = MUSE � MUUS.

Undominated size-stable matchings have a welfare advantage over undominated unit-stable

matchings because they effectively only require to satisfy one of the axioms that make up

stability. This provides a new insight on the trade-off created by Theorem 1: from a welfare

points of view, eliminating waste is less costly than bounding instability among size envy-free

matchings.

Example 1 illustrates the welfare difference between size- and unit-stability. Recall that

µ∗ =

(
s1 s2 d1

o1 o2 ∅

)
and µ =

(
s1 s2 d1

o1 o1 ∅

)

are respectively the unique (undominated) size-stable and the unique undominated unit-

stable matchings. Clearly, µ∗ � µ; the reason is that size-stability allows giving d1 a 2-unit

claim to o1, which in turn allows matching s2 to his first preferences o2.

Theorem 2 offers an alternative criterion to select among undominated size-stable match-

ings. Rather than requiring that such a matching be d-dominated, one might instead require

that it weakly dominate at least one undominated unit-stable matching. While double-unit

agents may get their priority violated, this additional criterion ensure that they are at least as

well-off as they are at some UUSM. Theorem 2 implies that this criterion does not eliminate

all undominated size-stable matchings; however, it may eliminate some undesirable ones. In

Example 4, this is the case of the “bad” USSM µ′.

27Recall that the optimal envy-free matching, denoted µOEF , is unit-stable, hence it does not dominate
any undominated unit-stable matching but may be dominated by some of them so MUUS � {µOEF }.

28Weak set domination does not preclude the case where the sets are identical. In fact, in Example 2,
MUS = MUUS = MUSS . For completeness, I show in the appendix (Proposition 9) that cases do exist where
all undominated stable matchings are dominated by a unit-stable, respectively a size-stable, matching.
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6 Conclusion

This paper studies a simple extension of the canonical school choice model where agents

require either one or two units of an object. This seemingly small difference has important

consequences, in particular stable matchings may not exist. I characterize stability to be the

combination of three properties: size envy-freeness, K-boundedness, and non-wastefulness.

I show that the last two axioms are incompatible, in the sense that the set of K-bounded

and non-wasteful matchings may be empty. This result identifies an important trade-off that

market designers face when confronted to matching markets with sizes: the size of claims can

be bounded or waste can be eliminated but not both. I propose two solution concepts that lie

on either side of that trade-off and guarantee existence. If waste is tolerable, unit-stability –

which is characterized by size envy-freeness and 1-boundedness – limits claims to at most one

unit per object but may be wasteful. Otherwise, size-stability – characterized by size envy-

freeness and non-wastefulness – eliminates waste at the cost of no longer bounding the number

of units that double-unit agents may claim. In order to alleviate this problem, I propose

the solution concept of d-undominated size-stable matchings, which are undominated from

the point of view of double-unit agents, thereby compensating these agents for the possible

violation of their priority. From a welfare point of view, I show that, while both fairness

criteria allow improving upon stability, size-stability is more desirable than unit-stability.

The present paper opens several avenues for future research. First, the model can be

extended to fit several real-world matching problems. Agents may have multidimensional

requirements, have preferences over both objects and a number of units, or desire units of

different objects. In all of these extensions, the trade-off between eliminating waste and

bounding the size of claims remains relevant. Unit-stability and size-stability can be easily

extended so long as agents can be ranked by sizes, that is if there is no situation where

one agent requires more units than another agent for one dimension but fewer for another

dimension. Second, given the possible multiplicity of solutions, it may be possible to refine

what constitutes a “good” undominated unit-stable matchings or d-undominated size-stable

matching. Example 2, where two perfectly symmetric matchings are the only two USMs,

UUSMs, and USSMs, suggests that there does not always exist one “best” matching; nev-

ertheless, it may be possible to eliminate some of the less desirable outcomes. Finally, this

paper has remained silent on mechanisms that could find desirable matchings. McDermid and

Manlove (2010) have established that it is not possible in general to find a stable matching

in polynomial time, but whether this extends to undominated unit-stable matchings and d-

undominated size-stable matchings remains an open question. So do the incentive properties

of such mechanisms.
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Appendix

Proofs

Proof of Proposition 2: (If) Let µ be a size envy-free, 1-bounded, and non-wasteful

matching. By definition, a double-unit agent and an object form a blocking pair if the

former has a 2-unit claim to the latter. As µ is 1-bounded, there does not exist any blocking

pair at µ that involves a double-unit agent. Because µ is size envy-free, single-unit agents do

not envy any agent; therefore they only have claims to unassigned units. However, because

µ is non-wasteful, single-unit agents do not have any claim at all so µ is stable as it does not

have any blocking pair. �

(Only If) Let µ be a matching that is not 1-bounded. Then, there exists an agent a

who has a 2-unit claim to an object o. As wa ≤ 2, a and o form a blocking pair and µ is not

stable. Next, let µ be a matching that is not size envy-free. Then, there exist two agents a

and a′ such that a envies a′ and wa ≤ wa′ . By definition, the fact that a envies a′ implies

µ(a′) �a µ(a) and a .µ(a′) a
′; therefore a has a wa′-unit claim to µ(a′). As wa ≤ wa′ , a has a

wa-unit claim to µ(a′), which means that (a, µ(a′)) is a blocking pair, hence µ is not stable.

Finally, let µ be a wasteful matching. Then, there exists an agent a who has a claim to wa

unassigned units of some object o. This directly implies that a has a wa-unit claim to o; as

a result, (a, o) constitutes a blocking pair and µ is not stable. �

Proof of Theorem 1: Parts (ii) and (iii) are directly implied by, respectively, Propositions

3 and 4. I prove part (i) by counterexample. Let K = 1, 3, 5, . . . be an odd positive integer,

I show that the example below does not have any K-bounded and non-wasteful matching.

(Note that setting K to be odd is without loss of generality as it can be arbitrarily large and

the fact that no K-bounded and non-wasteful matching exists implies that no K−1-bounded

and non-wasteful matching exists.)

Example 5 (No K-bounded non-wasteful Matching). Let S = {s1, . . . , sK , ŝ1, . . . ŝ2K}, D =

{d1, . . . , d(K+1)/2}, O = {o1, o2, ∅}, and (qo1 , qo2 , q∅) = (2K, 2K, 4K + 1). The preferences

and priorities are given below.
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s1, . . . , sK ŝ1, . . . , ŝ2K d1, . . . , d(K+1)/2
... o1 (2K) o2 (2K) ∅ (4K + 1)

o1 o2 o1
... ŝ1 s1

o2 o1 ∅ ...
...

...

∅ ∅ o2
... ŝ2K sK
... d1 ŝ1
...

...
...

...
... d(K+1)/2 ŝ2K
... s1 d1
...

...
...

... sK d(K+1)/2

Towards a contradiction, suppose the existence of a K-bounded and non-wasteful match-

ing µ. First, consider the case where all double-unit agents are matched to o1: µ(dk) = o1

for all k = 1, . . . , (K + 1)/2. Fix n = 0, 1, . . . , K − 1 and let ŝ1, . . . , ŝn be n distinct elements

of {ŝ1, . . . , ŝ2K} and s1, . . . , sn be n distinct elements of {s1, . . . , sK}. Suppose that, for all

i = 1, . . . , n, µ(ŝi) = o1 and µ(si) = o2. In words, at least n agents in {ŝ1, . . . , ŝ2K} are

matched to o1 (their second preference) and at least n agents in {s1, . . . , sK} are matched to

o2 (their second preference). Then, K + 1 units of o1 are assigned to double-unit agents and

n units of o1 are assigned to ŝ1, . . . , ŝn so at most 2K − (K + 1)− n = K − (n+ 1) units of

o1 may be assigned to the K − n agents in {s1, . . . , sK} \ {s1, . . . , sn}. Consequently, there

exists an agent sn+1 ∈ {s1, . . . , sK} \ {s1, . . . , sn} who is not matched to o1. At most K − 1

units of o2 may be assigned to agents who have a higher priority than sn+1 for o2; therefore, if

sn+1 is matched to the null object, he has a claim to at least K + 1 units of o2, contradicting

the assumption that µ is K-bounded. As a result, sn+1 is matched to o2: µ(sn+1) = o2. In

turn, this means that at least n + 1 units of o2 are assigned to s1, . . . , sn, sn+1 so at most

2K − (n + 1) units may be assigned to the 2K − n agents in {ŝ1, . . . , ŝ2K} \ {ŝ1, . . . , ŝn}.
Consequently, there exists an agent ŝn+1 ∈ {ŝ1, . . . , ŝ2K}\{ŝ1, . . . , ŝn} who is not matched to

o2. If ŝn+1 is matched to the null object, he has a claim to the K+1 units of o1 assigned to the

double-unit agents and µ is not K-bounded. ŝn+1 is therefore matched to o1: µ(ŝn+1) = o1.

Then, at least n + 1 agents in {ŝ1, . . . , ŝ2K} are matched to o1 and at least n + 1 agents in

{s1, . . . , sK} are matched to o2. As the above reasoning holds for every n = 0, . . . , K − 1, it

follows by induction that at least K agents in {ŝ1, . . . , ŝ2K} are matched to o1. Then, K units

of o1 are assigned to these agents and K + 1 units are assigned to the double-unit agents, a

contradiction since o1’s quota is 2K.

It remains to show that a contradiction also arises in the case where, for some k =
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1, . . . , (K + 1)/2, dk is not matched to o1. If dk is matched to o2, he has a claim to at least

two unassigned units of the null object, contradicting the assumption that µ is non-wasteful.

Therefore, dk is matched to the null object: µ(dk) = ∅. If none of the agents in {ŝ1, . . . , ŝ2K}
are matched to o1, then only double-unit agents may be matched to o1 and have a higher

priority than dk. As there are (K−1)/2 double-unit agents other than dk, at most K−1 units

of o1 are assigned to agents with a higher priority than dk. Consequently, dk has a claim to at

least K + 1 units of o1, contradicting the assumption than µ is K-bounded. Therefore, there

exists an agent ŝ0 ∈ {ŝ1, . . . , ŝ2K} who is matched to o1: µ(ŝ0) = o1. Fix n = 0, 1, . . . , K − 1

and let ŝ1, . . . , ŝn be n distinct elements of {ŝ1, . . . , ŝ2K} \ {ŝ0} and s1, . . . , sn be n distinct

elements of {s1, . . . , sK}. Suppose that, for all i = 1, . . . , n, µ(ŝi) = o1 and µ(si) = o2. Then,

at least n+ 1 agents in {ŝ1, . . . , ŝ2K} are matched to o1 so at most 2K − (n+ 1) of them are

matched to o2. Additionally, no double-unit agent is matched to o2 as such an agent would

have a claim to at least two unassigned units of the null object, contradicting the assumption

that µ is non-wasteful. If exactly n agents in {s1, . . . , sK} are matched to o2, then at most

2K− (n+1)+n = 2K−1 units of o2 are assigned altogether. It directly follows that at least

one unit of o2 is unassigned. As ŝ0, ŝ1, . . . , ŝn are matched to o1 but prefer o2, µ is wasteful,

a contradiction. There consequently exists an agent sn+1 ∈ {s1, . . . , sK} \ {s1, . . . , sn} who

is matched to o2: µ(sn+1) = o2. This means that at least n + 1 agents in {s1, . . . , sK}
are matched to o2, hence at most K − (n + 1) of them are matched to o1. Additionally,

at most (K − 1)/2 double-unit agents are matched to o1 since dk is not; therefore at most

K − 1 units of o1 are assigned to them. If exactly n+ 1 agents in {ŝ1, . . . , ŝ2K} are matched

to o1, then at most K − (n + 1) + K − 1 + n + 1 = 2K − 1 units of o1 are assigned

altogether. This directly implies that at least one unit of o1 is unassigned. As s1, . . . , sn, sn+1

are matched to o2 but prefer o1, µ is wasteful, a contradiction. There consequently exists an

agent ŝn+1 ∈ {ŝ1, . . . , ŝ2K}\{ŝ0, ŝ1, . . . , ŝn} who is matched to o1: µ(ŝn+1) = o1. Therefore, at

least n+ 2 agents in {ŝ1, . . . , ŝ2K} are matched to o1 and at least n+ 1 agents in {s1, . . . , sK}
are matched to o2. As the above reasoning holds for every n = 0, . . . , K − 1, it follows by

induction that at least K+1 agents in {ŝ1, . . . , ŝ2K} are matched to o1, which directly implies

that at most K−1 of them are matched to o2. As none of the double-unit agents are matched

to o2, it follows that at most 2K − 1 units of o2 are assigned altogether, hence at least one

is unassigned. Those of ŝ1, . . . , ŝ2K who are matched to o1 have a claim to that unit, hence

µ is wasteful, a contradiction. �

Proof of Proposition 3: By definition, envy-freeness implies size envy-freeness and by

Delacrétaz, Kominers, and Teytelboym (2016), the PFDA algorithm produces the optimal

envy-free matching; therefore, it remains to show that the PFDA algorithm produces a 1-
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bounded matching.

I begin by introducing three elements of notation that are useful throughout the proof.

First, let N be the total number of rounds of the PFDA algorithm. (Since at least one

rejection occurs in each round but the last one and the number of agents and objects is

finite, N is finite.) Second, for any a ∈ A, any o ∈ O, and any i = 1, . . . , N , let Âi(a,o) be the

set of agents who have a higher priority than a for o and propose to o in some Round j ≤ i

of the PFDA algorithm. Third, again for any a ∈ A, any o ∈ O, and any i = 1, . . . , N , let

Ri
(a,o) ≡ wa+

∑
ã∈Âi

(a,o)
wã be the total size of a and the agents with a higher priority who have

proposed to o by Round i. By construction, a′ Do a implies Âi(a′,o) ⊆ Âi(a,o) and Ri
(a′,o) ≤ Ri

(a,o)

while i′ ≤ i implies Âi
′

(a,o) ⊆ Âi(a,o) and Ri′

(a,o) ≤ Ri
(a,o). In addition, by construction, o rejects

a proposal by a in Round i if and only if Ri
(a,o) > qo.

Denote by µ the matching produced by the PFDA algorithm and, towards a contradiction,

suppose that an agent a has a 2-unit claim to an object o at µ, that is o �a µ(a) and∑
ã∈µ̂a(o)wã ≤ qo − 2. As µ is envy-free, µ̂a(o) = µ(o) so

∑
ã∈µ(o)wã ≤ qo − 2. Without loss

of generality, let a be the agent with the highest priority for o among those who prefer o to

their object. Then, ÂN(a,o) = µ(o) so

RN
(a,o) = wa +

∑
ã∈ÂN

(a,o)

wã = wa +
∑
ã∈µ(o)

wã ≤ wa + qo − 2 ≤ qo.

It follows that Ri
(a,o) ≤ RN

(a,o) ≤ qo for all i = 1, . . . , N so o does not reject a, which contradicts

o �a µ(a). �

Proof of Proposition 4:

Let µ be the matching produced by the TSDA algorithm. I show that µ is size envy-free

and non-wasteful.

(Size Envy-free) If a single-unit agent s envies an agent a at µ, then (s, µ(a)) is a block-

ing pair of the first-stage matching, a contradiction since that matching is stable. Similarly,

if a double unit agent d envies another double-unit agent d′, (d, µ(d)) is a blocking pair of

the second stage matching. �

(Non-Wasteful) If there exists a single-unit agent s and an object o such that o �s µ(s)

and
∑

a∈µ(o)wa ≤ qo−1, then (s, o) is a blocking pair of the first-stage matching. Similarly, if

there exists a double-unit agent d and an object o such that o �d µ(d) and
∑

a∈µ(o)wa ≤ qo−2,

then (d, o) is a blocking pair of the second-stage matching. �

Proof of Lemma 1: If {µ1} � {µ2}, then by definition µ1 � µ2 and, as {µ1} 6= {µ2},
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µ1 6= µ2 so µ1 � µ2. If µ1 � µ2, then {µ1} 6= {µ1}, every matching in {µ2} is weakly

dominated by a matching in {µ1}, and no matching in {µ2} dominates any matching in {µ1}
so {µ1} � {µ2}. �

Proof of Proposition 5:

(If) I show that a matching that is not unit-stable violates at least one of size envy-

freeness or 1-boundedness. Let µ be a matching with a unit blocking pair (a, o) ∈ A×O. If

a ∈ D, a has a 2-unit claim to o and µ is not 1-bounded. If a ∈ S and
∑

a′∈µ(o)wa′ 6= qo − 1,

then either a ∈ S and
∑

a′∈µ(o)wa′ = qo so a envies at least one agent in µ(o), which means

that µ is not size envy-free, or
∑

a′∈µ(o)wa′ ≤ qo − 2, in which case a has a 2-unit claim to o

and µ is not 1-bounded. If a ∈ S and
∑

a′∈µ̂a(o)wa′ 6= qo − 1, then either
∑

a′∈µ̂a(o)wa′ = qo

and (a, o) is not a blocking pair, a contradiction since a unit blocking pair is by definition a

blocking pair, or
∑

a′∈µ̂a(o)wa′ ≤ qo − 2 and a has a 2-unit claim to o, in which case µ is not

1-bounded. �

(Only If) I show that a matching that is either not size envy-free or not 1-bounded does

not satisfy unit-stability. Let µ be a matching that is not size envy-free. Then, there exists

two agents a and ã such that a envies ã and wa ≤ wã. For ease of notation, let o ≡ µ(ã).

The fact that a envies ã implies that a has a wã-unit claim to o. Combined with the fact

that wa ≤ wã, this means that a has a wa-unit claim to o so (a, o) is a blocking pair. By

definition, ã ∈ µ(o) \ µ̂a(o) so
∑

a′∈µ(o)wa′ 6=
∑

a′∈µ̂a(o)wa′ ; therefore at least one of the two

sums is not equal to qo − 1 and (a, o) is a unit-blocking pair so µ is not unit-stable.

Let µ be a matching that is not 1-bounded. Then, there exists a pair (a, o) ∈ A × O

such that a has a 2-unit claim to o. As wa ≤ 2, (a, o) is a blocking pair. In addition,∑
a′∈µ̂a(o)wa′ ≤ qo − 2 so (a, o) is a unit blocking pair and µ is not unit-stable. �

Proof of Proposition 6:

(If) I show that a matching that is not size-stable violates at least one of size envy-

freeness or non-wastefulness. Let µ be a matching with a size blocking pair (a, o) ∈ A × O.

If a ∈ S, then a has a 1-unit claim to o, meaning that at least one unit of o is either assigned

to a lower-priority agent, in which case µ is not size envy-free, or unassigned, in which case

µ is wasteful. If a ∈ D, then a has a 2-unit claim to o and 2 · |µ̂a(o)∩D|+ |µ(o)∩S| ≤ qo− 2

so at least two units of o are either assigned to a lower-priority double-unit agents, in which

case µ is not size envy-free, or unassigned, in which case µ is wasteful. �

(Only If) I show that a matching that is either wasteful or not size envy-free does not

satisfy size-stability. Let µ be a matching that is not size envy-free. Then, there exists two

agents a and ã such that a envies ã and wa ≤ wã. For ease of notation, let o ≡ µ(ã). The
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fact that a envies ã implies that a has a wã-unit claim to o. Combined with the fact that

wa ≤ wã, this means that a has a wa-unit claim to o so (a, o) is a blocking pair. If a ∈ S,

this directly implies that (a, o) is a size blocking pair and µ is not size-stable. If a ∈ D, then

wa ≤ wã implies ã ∈ D and, since a .o ã, |µ(o) ∩D| ≥ |µ̂a(o) ∩D|+ 1. Then,

2 · |µ̂a(o) ∩D|+ |µ(o) ∩ S| ≤ 2 · |µ(o) ∩D|+ |µ(o) ∩ S| − 2 = (
∑

a′∈µ(o)

wa′)− 2 ≤ qo − 2,

where the last inequality comes from the fact that, by definition, matchings do not violate

capacity constraints so
∑

a′∈µ(o)wa′ ≤ qo. The above series of inequalities implies that (a, o)

is a size blocking pair so µ is not size-stable.

Let µ be a wasteful matching. Then, there exists a pair (a, o) ∈ A×O such that o �a µ(a)

and
∑

a′∈µ(o)wa′ ≤ qo − wa. (a, o) is a blocking pair so a ∈ S directly implies it is a size

blocking pair and µ is not size-stable. If a ∈ D, then

2 · |µ̂a(o) ∩D|+ |µ(o) ∩ S| ≤ 2 · |µ(o) ∩D|+ |µ(o) ∩ S| =
∑

a′∈µ(o)

wa′ ≤ qo − wa = qo − 2

so (a, o) is a size blocking pair and µ is not size-stable. �

Proof of Theorem 2:

(MUUS � MUS) The result is trivial if MUS = ∅ so the proof concentrates on the case

where MUS 6= ∅. By Propositions 2 and 5, unit-stability is characterized by two of the three

axioms that characterize stability; therefore all stable matchings are unit-stable. Let ν be

an undominated stable matching. Then, ν is unit-stable and, since domination is a partial

order, ν is either an undominated unit-stable matching or it is dominated by one; therefore,

there exists µ ∈ MUUS such that µ � ν. Consequently, MUUS � MUS unless there exist

µ ∈MUUS and ν ∈MUS such that ν � µ. In that case, however, the fact that ν is unit-stable

implies that µ /∈MUUS, a contradiction. �

(MUSS � MUUS) Denote by MUSE the set of undominated size envy-free matchings,

that is the set of matchings that are size envy-free and not dominated by any other size envy-

free matching. Theorem 1 and the fact that domination is a partial order guarantee that this

set is nonempty. As unit-stability is characterized by size envy-freeness and 1-boundedness

(Proposition 5), all unit-stable matchings are size envy-free. By an analogous reasoning to

the one above, this implies MUSE �MUUS. To complete the proof, it remains to show that

MUSS = MUSE.

Towards a contradiction, suppose the existence of an undominated size envy-free matching

µ that is not size-stable. Since size-stability is characterized by size envy-freeness and non-
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wastefulness (Proposition 6), µ is wasteful. Thus, there exists a blocking pair (a, o) such that

o �a µ(o) and
∑

a′∈µ(o)wa′ ≤ qo−wa. Without loss of generality, let a be the highest-priority

agent in that situation. (That is, for all ã ∈ A such that o �ã µ(o) and
∑

a′∈µ(o)wa′ ≤ qo−wã,
a D ã.) Let ν be a matching constructed as follows: ν(a) = o and ν(a′) = µ(a′) for all a′ 6= a.

ν does not violate any capacity constraint since µ does not and o has at least wa unassigned

units at µ. If a ∈ D, no agent envies a since all agents who prefer o to their own objects

have a lower priority than a for o. If a ∈ S, the same is true of single-unit agents. Therefore,

a is only envied by larger-size agents (if any) and, since µ is size envy-free, so is ν. Since

ν(a) = o �a µ(a) and ν(a′) = µ(a′) for all a′ 6= a, ν dominates µ so µ is dominated by

another size envy-free matching, a contradiction. It follows that all undominated size envy-

free matchings are size-stable. Combined with the fact that all size-stable matchings are size

envy-free, this means that every undominated size envy-free matching is an undominated

size-stable matching: MUSE ⊆MUSS.

Again towards a contradiction, suppose this tme the existence of an undominated size-

stable matching µ that is not an undominated size envy-free matching. As all size-stable

matchings are size envy-free and domination is a partial order, µ is dominated by an un-

dominated size envy-free matching ν. However, because MUSE ⊆ MUSS, ν is size-stable so

µ is not an undominated size-stable matching, a contradiction. Therefore, MUSS ⊆ MUSE,

which means that MUSS = MUSE. �

Additional Results

I present below results that are mentioned but not formally stated in the main text, together

with their proofs.

Proposition 7. Unit-stable matchings can be made stable by removing at most one unit per

object but matchings that can be made stable by removing at most one unit per object are not

necessarily unit-stable.

Proof: I first prove the first part of the statement. Let µ be a unit-stable matching. If it

is stable, the proof is complete. Otherwise, let o be an object involved in a blocking pair

at µ and let (s, o) be any of the blocking pairs that involve o. By definition, s ∈ S and∑
a′∈µ(o)wa′ =

∑
a′∈µ̂s(o)wa′ = qo − 1. Consider the modified market where one unit of o is

removed. Since one unit of o was unassigned, µ is still a matching in this modified market

and any blocking pair at µ in the modified market was already a blocking pair in the original

market. In addition,
∑

a′∈µ̂s(o)wa′ = qo so o is no longer involved in any blocking pair. A

33



stable matching obtains by repeating this operation until none of the objects are involved in

a blocking pair. �

I next show the second part of the statement by counterexample. Consider the unique

size-stable matching in Example 1:

µ∗ ≡

(
s1 s2 d1

o1 o2 ∅

)
.

µ∗ is not unit-stable since d1 has a two-unit claim to o1. However, removing the unassigned

unit of o1 yields a modified market where qo1 = 1 and µ∗ is stable. �

Proposition 8. d-domination is a partial order over the set of all matchings M and set

domination is a partial order over the set of all matching subsets 2M .

Proof: I show that both d-domination and set domination are antisymmetric and transitive.

d-Domination

(Antisymmetric) Towards a contradiction, suppose the existence of two matchings

µ1, µ2 ∈ M such that µ1 �D µ2 and µ2 �D µ1. µ1 �D µ2 implies that µ1(a) �a µ2(a)

for some a ∈ A so µ2 does not dominate µ1. Then, the fact that µ2 �D µ1 implies that

µ2(d) �d µ1(d) for some d ∈ D, which contradicts µ1 �D µ2. �

(Transitive) Consider three matchings µ1, µ2, µ3 ∈M such that µ1 �D µ2 and µ2 �D µ3.

One needs to show that µ1 �D µ3. If µ1 � µ2 and µ2 � µ3, µ1 � µ3 since domination is

a partial order (hence it is transitive). As domination implies d-domination, µ1 �D µ3.

Otherwise, the hypothesis implies that µ1(d) �d µ2(d) �d µ3(d) for all d ∈ D. In addition,

either µ1 does not dominate µ2, in which case µ1 �D µ2 implies µ1(d) �d µ2(d) for some

d ∈ D or µ2 does not dominate µ3, in which case µ2 �D µ3 implies µ2(d) �d µ3(d) for some

d ∈ D. Combining either case with the fact that µ1(d) �d µ2(d) �d µ3(d) for all d ∈ D

implies that µ1(d) �d µ3(d) for all d ∈ D and µ1(d) �d µ3(d) for some d ∈ D so µ1 �D µ3. �

Set Domination

(Antisymmetric) Towards a contradiction, suppose the existence of two sets of match-

ings M1,M2 ∈ 2M such that M1 �M2 and M2 �M1. Then, the following hold:

(a) For all µ1 ∈M1, there exists µ2 ∈M2 such that µ2 � µ1,

(b) For all µ1 ∈M1, there does not µ2 ∈M2 such that µ2 � µ1,

(c) For all µ2 ∈M2, there exists µ1 ∈M1 such that µ1 � µ2, and
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(d) For all µ2 ∈M2, there does not µ1 ∈M1 such that µ1 � µ2.

Combining (a) and (b) implies that for all µ1 ∈M1, there exists µ2 ∈M2 such that µ2 = µ1,

which in turn implies M1 ⊆ M2. Analogously, (c) and (d) imply M2 ⊆ M1 so M1 = M2, a

contradiction. �

(Transitive) Consider three sets of matchings M1,M2,M3 ∈ 2M such that M1 �M2 and

M2 �M3. One needs to show that M1 �M3. The hypothesis implies the following:

(a) For all µ2 ∈M2, there exists µ1 ∈M1 such that µ1 � µ2,

(b) For all µ3 ∈M3, there exists µ2 ∈M2 such that µ2 � µ3,

(c) For all µ1 ∈M1, there does not µ2 ∈M2 such that µ2 � µ1, and

(d) For all µ2 ∈M2, there does not µ3 ∈M3 such that µ3 � µ2.

As domination is transitive, combining (a) and (b) directly implies that, for all µ3 ∈ M3,

there exists µ1 ∈ M1 such that µ1 � µ3. Then M1 � M3 unless there exists µ1 ∈ M1 and

µ3 ∈M3 such that µ3 � µ1. In that case, by (b) there exists µ2 ∈M2 such that µ2 � µ3 � µ1,

which, as domination is transitive, contradicts (c). �

Proposition 9. An undominated stable matching may be dominated by a unit-stable match-

ing and by a size-stable matching.

Proof: I first provide an example to show the first part of the statement: an undominated

stable matching may be dominated by a unit-stable matching.

Example 6 (Unit-stable dominates USM). Let S = {s1, s2}, D = {d1, d2, d3}, O = {o1, o2,
o3, o4, ∅}, and (qo1 , qo2 , qo3 , qo4 , q∅) = (2, 2, 2, 2, 8). The preferences and priorities are given

below.

s1 s2 d1 d2 d3 o1 (2) o2 (2) o3 (2) o4 (2) ∅ (8)

o4 o2 o1 o3 o2 s1 d1 s2 d2

...

o2 o3 o2 o4 ∅ d1 s1 d2 s1

o1 ∅ ∅ ∅
...

...

d3
...

...∅ ...
...

...
s2

o3 d2

Lemma 2. There are exactly two unit-stable matchings in Example 6:

µ =

(
s1 s2 d1 d2 d3

o1 o3 o2 o4 ∅

)
and ν =

(
s1 s2 d1 d2 d3

o2 o3 o1 o4 ∅

)
.
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It is easy to verify that µ does not have any blocking pair, hence it is stable. On the other

hand, ν has one blocking pair: (s2, o2). However, s2 ∈ S and∑
a′∈ν(o2)

wa′ =
∑

a′∈ν̂s2 (o)

wa′ = ws1 = 1 = qo2 − 1

so (s2, o2) is not a unit blocking pair and ν is unit-stable. I complete the proof of Lemma 2

separately below by showing that there are no other unit-stable matchings.

Notice that ν dominates µ since s1 and d1 are better-off at ν and all other agents are

matched to the same object. Therefore, µ is an undominated stable matching (since it is the

unique stable matching by Lemma 2) and is dominated by ν, a unit-stable matching. �

I next provide an example to show the second part of the statement: an undominated

stable matching may be dominated by a size-stable matching.

Example 7 (Size-stable dominates USM). Let S = {s1, s2, s3}, D = {d1}, O = {o1, o2, ∅},
and (qo1 , qo2 , q∅) = (2, 1, 5). The preferences and priorities are given below.

s1 s2 s3 d1 o1 (2) o2 (1) ∅ (5)

o1 o2 o1 o1 s2 s1

...
o2 o1 o2 ∅ d1 s3

∅ ∅ ∅ o2 s1 s2

s3 d1

Lemma 3. There are exactly two size-stable matchings in Example 7:

µ =

(
s1 s2 s3 d1

o1 o1 o2 ∅

)
and ν =

(
s1 s2 s3 d1

o1 o2 o1 ∅

)
.

It is easy to verify that µ does not have any blocking pair, hence it is stable. On the other

hand, ν has one blocking pair: (d1, o1). However, d1 ∈ D and

2 · |ν̂d1(o1) ∩D|+ |ν(o1) ∩ S| = 2 · |∅|+ |{s1, s3}| = 2 · 0 + 2 = 2 = qo1 > qo1 − 2

so (d1, o1) is not a size blocking pair and ν is size-stable. I complete the proof of Lemma 3

separately below by showing that there are no other size-stable matchings.

Notice that ν dominates µ since s2 and s3 are better-off at ν and all other agents are

matched to the same object. Therefore, µ is an undominated stable matching (since it is the

unique stable matching by Lemma 3) and is dominated by ν, a size-stable matching. �
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Proof of Lemma 2: Let ξ be a unit-stable matching. First of all, notice that if o1 =

µ(s1) �s1 ξ(s1), then s1 has a 2-unit claim to o1 and ξ is not unit-stable so ξ(s1) �s1 µ(s1) =

o1. An analogous reasoning holds for the other agents so ξ � µ. Then, s1 is matched to one

of o4, o2, or o1. I consider each case separately.

If ξ(s1) = o4, then d2 cannot be matched to o4 so ξ(d2) = o3, which similarly implies

ξ(s2) = o2. In addition, ξ(s1) = o4 implies ξ(d1) = o1 as, otherwise, d1 has a 2-unit claim to

o1. d3 cannot be matched to o2 since s2 is, so ξ(d3) = ∅. The matching obtained is(
s1 s2 d1 d2 d3

o4 o2 o1 o3 ∅

)
,

which is not unit-stable since d3 has a 2-unit claim to o2.

If ξ(s1) = o2, d1 and d3 cannot be matched to o2 so ξ(d1) = o1 and ξ(d3) = ∅. In addition,

ξ(d2) = o4 as, otherwise, s1 has a 2-unit claim to o4. In turn, d2 has a 2-unit claim to o3

unless ξ(s2) = o3. The matching obtained is ν.

If ξ(s1) = o1, then ξ(d1) = o2 as s1 and d1 cannot be both matched to o1. In turn, no

agent other than d1 is matched to o2 so ξ(s2) = o3 and ξ(d3) = ∅. Then, d2 is not matched

to o3 so ξ(d2) = o4 and µ obtains.

It follows that no matching other than µ and ν is unit-stable, which completes the proof

since µ and ν were shown to be unit-stable in the proof of Proposition 9. �

Proof of Lemma 3: Let ξ be a size-stable matching and suppose first that ξ(d1) = o1.

Then, no other agent is matched to o1 and ξ(s1) = o2 as, otherwise, (s1, o2) is a size blocking

pair. Since all units of o1 and o2 are assigned, ξ(s2) = ξ(s3) = ∅, which yields(
s1 s2 s3 d1

o2 ∅ ∅ o1

)
.

That matching is not size-stable because s2 envies d1. If ξ(d1) = o2, ξ is wasteful since

∅ �d1 o2; therefore, ξ(d1) = ∅ in all size-stable matchings. o1 has a quota of two units and is

s1’s first preference. Since d1 is not matched to o1, s1 has a 1-unit claim to o1 (hence (s1, o1)

is a size blocking pair) unless ξ(s1) = o1. Either one of ξ(s2) = ∅ or ξ(s3) = ∅ creates a size

blocking pair since the null is the last preference of both s2 and s3 and one unit of each of o1

and o2 remains to be assigned. Thus, there are two possibilities: ξ(s2) = o1 and ξ(s3) = o2,

which yields µ, and ξ(s2) = o2 and ξ(s3) = o1, which yields ν. It follows that no matching

other than µ and ν is size-stable, which completes the proof since µ and ν were shown to be

size-stable in the proof of Proposition 9. �
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