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Abstract. Policymakers frequently use reserve categories to combine competing

objectives in allocating a scarce resource based on priority. For example, schools

may prioritize students from underprivileged backgrounds for some of their seats

while allocating the rest of them based solely on academic merit. The order in which

different categories are processed has been shown to have an important yet subtle

impact on allocative outcomes—and it has led to unintended consequences in prac-

tice. I introduce a new, more transparent way of processing reserves, which handles

all categories simultaneously. I characterize my solution, showing that it satisfies

basic desiderata and is category neutral : if an agent qualifies for n categories, she

takes 1/n units from each of them. A practical advantage of this approach is that

the relative importance of categories is entirely captured by their quotas.
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1. Introduction

If a good is in short supply, who should have access to it? The COVID-19 crisis has

highlighted the importance of rationing rules—for example, to allocate ventilators or

vaccine doses—in situations where demand exceeds supply and it is not possible to

use a price mechanism to equate them. The simplest approach is to use a priority

order and allocate the good to whomever has the highest priority. For example,

medical practitioners have guidelines to determine who should receive a treatment

based, among other factors, on who is likely to benefit from it the most. Reserve

systems constitute a more flexible alternative, as they allow multiple priority orders,

each of which applies to part of the capacity. For example, several US states followed

a proposal by Pathak, Sönmez, Ünver, and Yenmez (2021) and initially reserved a
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proportion of their COVID-19 vaccines for disadvantaged communities,1 Chicago’s

exam schools reserve 70% of their seats for students from specific neighborhoods

(Dur, Pathak, and Sönmez, 2020), and 20,000 of the 65,000 H-1B visas delivered

every year by the US Customs and Immigration Service are reserved for applicants

with an advanced degree (Pathak, Rees-Jones, and Sönmez, 2020a).

In this paper, I propose a new solution for allocating a scarce resource through a

reserve system. I consider a standard rationing problem in which a certain number

of units (e.g., vaccine doses, school places, visas) have to be allocated to agents (e.g.,

patients, students, applicants) and are split into (reserve) categories (e.g., disadvan-

taged communities, neighborhoods, advanced degree, open), each of which has its

own priority order over the agents. Both in practice and in the literature, categories

are processed sequentially, following a precedence order. Each category allocates its

quota (the number of units allocated through that category) to its highest-priority

agents who have not yet received a unit. The precedence order impacts the allocation

because an agent who qualifies for multiple categories receives one from whichever cat-

egory is processed first; thus, the other categories for which that agent qualifies have

an additional unit to allocate to their next highest-priority agent. For that reason, all

else equal, categories processed later tend to matter more. My proposed solution is to

process categories simultaneously rather than sequentially, thus eliminating the prece-

dence order and ensuring that the relative importance of a category only depends on

its quota. Categories simultaneously allocate capacity to their highest-priority agents

until their quotas are filled. If an agent is allocated a unit from, say, n categories,

she only takes 1/n units of capacity from each, allowing these categories to allocate

more capacity to agents further down their respective priority orders.

The effect of changing the precedence order can be of similar magnitude to the

size of the quotas (Dur, Kominers, Pathak, and Sönmez, 2018); however, the role

played by the precedence order in determining the outcome is counterintuitive and

often misunderstood by policymakers and participants. In an experimental study,

Pathak, Rees-Jones, and Sönmez (2020b) find that a large proportion of subjects

reacted optimally to a change in quotas but ignored the impact of the precedence

order in which categories are processed. Such mistakes are also well documented

1The use of reserve systems for medical rationing is documented at www.covid19reservesystem.org.
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in the field. As Dur, Kominers, Pathak, and Sönmez (2018) report, the City of

Boston established in 1999 a 50-50 seat split for its public schools: half of each

school’s seats were reserved for students living within walking distance, while the

other half were open to all students. In practice, the “walk zone” reserve had almost

no impact because it was processed first. Pathak, Rees-Jones, and Sönmez (2020a)

document a similar story for the H-1B visa program: Procedure changes made for

logistical reasons in 2005 and 2009 had unintended consequences as they reversed

the precedence order. Even if policymakers are made aware of the issue, finding the

right combination of quotas and precedence order to achieve a given distributional

goal and ensuring that market participants understand how the system works remain

challenging tasks (Pathak, Rees-Jones, and Sönmez, 2020b, pp.4-5). In fact, in large

part because of concerns over the lack of transparency associated with the precedence

order, Boston Public Schools abandoned their reserve system when they realized why

it was not producing its intended outcome (Dur, Kominers, Pathak, and Sönmez,

2018). The solution presented in this paper eliminates the precedence order and the

problems it creates, thus making reserve systems easier to design for policymakers

and more transparent for participants.

Theoretical contribution. I introduce the simultaneous reserve (SR) algorithm. In

each round, categories simultaneously allocate their quotas to their respective highest-

priority agents. If an agent is allocated more than one unit in aggregate (i.e., over all

categories), then the maximum amount she receives from any category is reduced until

she is allocated exactly one unit in aggregate. It turns out that the SR algorithm may

run for infinitely many rounds without finding an allocation; however, I show that it

converges to one (Theorem 1), which I call the simultaneous reserve (SR) allocation.

The SR allocation satisfies three standard axioms introduced by Pathak, Sönmez,

Ünver, and Yenmez (2021)—compliance with eligibility requirements, nonwastefulness,

and respect of priorities—as well as a fourth axiom that I call category neutrality

(Theorem 2). An allocation is category neutral if every agent who qualifies for multiple

categories receives the same amount of capacity from all of them. I show that every

allocation satisfying these four axioms allocates to each agent the same amount of

capacity in aggregate (Theorem 3). Finally, I propose a polynomial-time algorithm

to compute the SR allocation (Theorem 4).
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Related Literature. This paper builds upon a rich literature on allocation prob-

lems with distributional constraints. Abdulkadiroğlu (2005) proposes a solution to

incorporate affirmative action through maximum quotas on specific types of students,

and Kojima (2012) shows how maximum quotas can have unintended consequences.

Hafalir, Yenmez, and Yildirim (2013) propose using minimum quotas instead, which

Westkamp (2013) adapts to the German university admission system. Ehlers, Hafalir,

Yenmez, and Yildirim (2014) and Echenique and Yenmez (2015) extend the approach

to include more categories. Gonczarowski, Kovalio, Nisan, and Romm (2020) use

a combination of minimum and maximum quotas to design a centralized matching

market for Israeli gap-year programs.

Kominers and Sönmez (2016) formally introduce a reserve system with sequential

processing, generalizing previous models by allowing any priorities and precedence

order. Sequential reserve systems have been studied in various contexts, including

Boston and Chicago’s public schools (Dur, Kominers, Pathak, and Sönmez, 2018;

Dur, Pathak, and Sönmez, 2020), medical rationing (Pathak, Sönmez, Ünver, and

Yenmez, 2021), the H-1B visa program (Pathak, Rees-Jones, and Sönmez, 2020a), and

university admissions in India (Sönmez and Yenmez, 2021, 2020b; Aygün and Turhan,

2020a,b) and Brazil (Aygun and Bó, 2021). Pathak, Rees-Jones, and Sönmez (2020b)

provide experimental evidence of how difficult it is to account for the precedence order.

The present paper departs from this literature by proposing a simultaneous reserve

system that does not rely on any precedence order.

Sönmez and Yenmez (2020a) consider a reserve system with a baseline priority

order. Each category prioritizes a set of beneficiaries and breaks ties with the baseline

priority order. Their horizontal envelope algorithm yields the unique allocation that

maximizes the number of units allocated to beneficiaries while respecting the baseline

priority order. Pathak, Sönmez, Ünver, and Yenmez’ (2021) smart reserves allow for

an arbitrary number of units to be allocated by the baseline priority order before

the other categories are considered. The reverse rejecting and smart reverse rejecting

rules of Aziz and Brandl (2021) generalize both procedures by allowing the categories’

priorities to differ from the baseline. An important feature of the SR allocation is

that it is entirely pinned down by the categories’ priorities and quotas: it does not

rely on any baseline priority order over agents or precedence order over reserved and
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unreserved units. Moreover, each of the aforementioned solutions matches agents

with categories while the SR allocation typically splits units across categories.

The SR algorithm can be interpreted as a DA procedure in which categories pro-

pose to agents, and subject to small differences in the setups, it is equivalent to the

fractional deferred acceptance algorithm of Kesten and Ünver (2015). I provide new

results for that family of algorithms; in particular, I show that the SR algorithm finds

an allocation in polynomial time when there are only two categories and otherwise

can be turned into a polynomial-time algorithm by using linear programming.

Last, the present paper is connected to the literature on random and probabilistic

serial assignment, initiated by Hylland and Zeckhauser (1979) and Bogomolnaia and

Moulin (2001), and generalized by Budish, Che, Kojima, and Milgrom (2013) and

Aziz and Brandl (2020). While the SR algorithm and probabilistic serial rule may

appear similar, I show in Section 4.4 that they yield different outcomes.

Organization of the paper. Section 2 presents a motivating example. Section 3

introduces the setup and the four axioms. Section 4 introduces the SR algorithm and

analyzes the properties of the SR allocation. Section 5 presents an algorithm that

produces the SR allocation in polynomial time. Section 7 concludes and all proofs

are in the appendix.

2. Motivating Example

I illustrate sequential and simultaneous processing with a simple example.2 A

school has four seats. Two of them are reserved for students living within walking

distance and the other two are open to all students. There are six students—Amy,

Bob, Claire, Dan, Eric, Fiona—and four of them—Amy, Bob, Eric, Fiona—live within

walking distance of the school. There is a general priority order over the students,

which I assume to be alphabetical. The “walk” category prioritizes students living

within walking distance and breaks ties alphabetically; hence, its priority is Amy,

Bob, Eric, Fiona, Claire, Dan. The “open” category ranks students alphabetically.

Consider sequential processing, starting with the walk category. That category

allocates its seats to its two highest-priority students, Amy and Bob. The open

2This example models the system used by Boston Public Schools until 2013 and uses the school choice
terminology for concreteness. However, the same example can be framed in different contexts, such
as allocating a vaccine and reserving some doses for members of disadvantaged communities.
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Walk (2) Open (2)

Amy 1 Amy
Bob 1 Bob
Eric Claire 1
Fiona Dan 1
Claire Eric
Dan Fiona

(a) Walk category processed first.

Walk (2) Open (2)

Amy Amy 1
Bob Bob 1
Eric 1 Claire
Fiona 1 Dan
Claire Eric
Dan Fiona

(b) Open category processed first.

Table 1. Sequential processing in the motivating example.

Walk (2) Open (2)

Amy 1/2 Amy 1/2
Bob 1/2 Bob 1/2
Eric 1 Claire 1
Fiona Dan
Claire Eric
Dan Fiona

Table 2. Simultaneous processing in the motivating example.

category is processed next, but its highest-priority students—Amy and Bob—have

already been allocated a seat. Therefore, the two seats are allocated to the next

highest-priority students, Claire and Dan. Table 1a summarizes the outcome. The

four students with the highest general priority—Amy, Bob, Claire, Dan—are allo-

cated a seat; hence, the same outcome would have been achieved without a reserve.

Suppose now that the open category is processed first. That category allocates its two

seats to Amy and Bob, its highest-priority students. As Amy and Bob have already

been allocated a seat, the walk category allocates its two seats to Eric and Fiona.

Table 1b summarizes the outcome. The students who live within walking distance of

the school—Amy, Bob, Eric, Fiona—are all allocated a seat; hence, the same outcome

would have been achieved by reserving all four seats.

The precedence order has a large impact in this example, as it determines the

allocation of half of the seats. Moreover, both outcomes are extreme in the sense

that they each follow the priority of one category and ignore the other category. In

contrast, simultaneous processing yields an intermediate solution that accounts for

both categories. The two categories simultaneously allocate their two seats to their
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highest-priority students. Hence, Amy and Bob each receive two seats, one from each

category. As students only require one seat, Amy and Bob only keep half a seat from

each category; hence, they each obtain one seat in aggregate. Each category has one

seat left to allocate to their respective third-priority students: Eric and Claire. Table 2

summarizes the outcome. Both categories are equally important in the outcome: Amy

and Bob are each allocated a seat through both categories, Claire is allocated a seat

through the open category, and Eric is allocated a seat through the walk category.

3. Setup

There are a set of agentsA with typical element a, a set of (reserve) categories C

with typical element c, and q ∈ Z>0 identical and indivisible units. Each category c

has a quota qc ∈ R≥0 with
∑

c∈C qc = q and a strict priority order πc over the

agents and an eligibility threshold ∅. Agent a is eligible for category c if aπc∅.
For every agent a and every category c, I denote by Âa,c = {a′ ∈ A : a′πca} and

Ǎa,c = {a′ ∈ A : aπca
′} the set of agents who have a higher and a lower priority than

a for c, respectively. A rationing problem is a tuple R = (A,C, (πc)c∈C , (qc)c∈C).

In practice, reserve systems often have an open category and one or more specific

categories that prioritize agents from a target group. For example, each of Chicago’s

exam schools has an open category that allocates 30% of the seats and ranks students

based on their exam scores, and four specific categories, each of which allocates 17.5%

of the seats and prioritizes students living in certain neighborhoods (Dur, Pathak, and

Sönmez, 2020). In the context of allocating a medical good (e.g., a vaccine), an open

category could rank patients based on medical needs and specific categories could

prioritize healthcare workers or patients from disadvantaged communities (Pathak,

Sönmez, Ünver, and Yenmez, 2021). In some applications, agents who are not in

a category’s target group are not eligible for it; for example, applicants without an

advanced degree can only receive an H-1B visa from the open category. The model

presented is completely flexible as it allows for any number of categories with any

quotas and priority orders. Moreover, to the best of my knowledge, this paper is the

first to allow noninteger category quotas. This can be useful in problems where the

number of units is small; for example, if there are 5 units and half of them need to

be reserved for a target group, each category’s quotas can be set to 2.5.
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An allocation is a matrix ξ = (ξa,c)a∈A,c∈C such that, for every agent a and

every category c, (i) ξa,c ∈ [0, 1], (ii)
∑

a′∈A ξa′,c ≤ qc, and (iii)
∑

c′∈C ξa,c′ ≤ 1.

Thus, each element ξa,c specifies the amount of capacity that c allocates to a, each

category allocates a total amount of capacity no larger than its quota, and each

agent is allocated at most one unit in aggregate. For every agent a, I denote by

ξa =
∑

c∈C ξa,c the aggregate amount of capacity allocated to a at allocation ξ, which

can be interpreted as the probability that a obtains a unit. An aggregate allocation

is a vector ρ = (ρa)a∈A such that ρa ∈ [0, 1] for every agent a and
∑

a∈A ρa ≤ q. I

denote by ρ(ξ) = (ξa)a∈A the aggregate allocation generated by the allocation ξ.

I introduce four axioms. The first three are common both in practice and in the

literature (see Pathak, Sönmez, Ünver, and Yenmez, 2021) but are generalized here

to a setting in which units can be split over categories.

Axiom 1. An allocation ξ complies with eligibility requirements if for every

agent a and for every category c such that a is not eligible for c, ξa,c = 0.

The first axiom only matters when some agents are not eligible for some categories;

for example, it would preclude H-1B visa applicants without an advanced degree to

obtain any capacity from the advanced degree category.

Axiom 2. An allocation ξ is nonwasteful if for every agent a such that ξa < 1 and

for every category c such that
∑

a′∈A ξa′,c < qc, a is not eligible for c.

If every agent is eligible for every category, the second axiom requires that
∑

a∈A ξa =

min{|A|, q}. In general, a category may not allocate its entire quota as long as all of

its eligible agents are allocated one unit in aggregate.

Axiom 3. An allocation ξ respects priorities if for every agent a such that ξa < 1,

for every category c, and for every lower-priority agent a′ ∈ Ǎa,c, ξa′,c = 0.

The third axiom ensures that each category allocates its quota following its priority

order; that is, an agent can only be allocated capacity from a category if all higher-

priority agents have been allocated one unit in aggregate.

While Axioms 1-3 narrow down the set of allocations to be considered, they leave

many possible candidates. In particular, these axioms are silent on a key question:

if an agent qualifies for multiple categories, from which one(s) should she receive a
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unit? The most common solution both in practice and in the literature is to use

a sequential reserve algorithm in which categories are processed one at a time and

allocate, until their quotas are filled, a unit to each of their highest-priority eligible

agents who have not yet been allocated a unit.3 As a result, an agent who qualifies

for multiple categories receives a unit from whichever is processed first. At the heart

of my proposed solution is the idea that, while units are ultimately indivisible, how

they are divided across categories is merely an accounting exercise; hence, the unit

that an agent receives may be split across multiple categories. The fourth axiom,

which is newly introduced in this paper, stipulates that the unit an agent is allocated

should be split equally among the categories for which she qualifies.

Axiom 4. An allocation ξ is category neutral if for every agent a and every cate-

gory c such that a is eligible for c and ξa,c < maxc′∈C{ξa,c′}, ξa,c +
∑

a′∈Âa,c
ξa′,c = qc.

Axiom 4 ensures that each agent receives the same amount of capacity from every

category with available capacity. In the motivating example, the category neutrality

condition dictates that Amy and Bob be allocated half a unit from each of the two

categories. However, it does not prevent Claire from being allocated one unit of

capacity from the open category and none from the walk category because the walk

category’s entire quota is allocated to higher-priority students. From a normative

perspective, Axiom 4 ensures that all categories are treated the same in regard to

sharing an agent so that their relative importance only depends on their quotas.

4. Simultaneous Reserve (SR) Allocation

In this section, I introduce an algorithm that processes categories simultaneously

and show that it converges to an allocation that satisfies Axioms 1-4. Moreover, I show

that every allocation satisfying Axioms 1-4 generates the same aggregate allocation.

4.1. Simultaneous Reserve (SR) Algorithm. The simultaneous reserve (SR) al-

gorithm is formally defined in Algorithm 1. To describe the algorithm and analyze

its properties, it is useful to define the concept of a preallocation, which is iden-

tical to an allocation but allows agents to be allocated more than one unit in ag-

gregate. Formally, a preallocation is a matrix x = (xa,c)a∈A,c∈C such that, for every

3See Pathak, Sönmez, Ünver, and Yenmez (2021, p.21) for a full description of that procedure.
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ALGORITHM 1: Simultaneous Reserve (SR)

Initialization Set x0 = 0|A|×|C| and d0 = 1|A|.
Round i ≥ 1:
Capacity Allocation For every agent a and every category c, if a is eligible for c,
then set xia,c = min{di−1

a ,max{qc −
∑

a′∈Âa,c
di−1
a′ , 0}}, and otherwise set xia,c = 0.

Demand Adjustment For every agent a such that xia < 1, set dia = 1. For every
agent a such that xia = 1, set dia = maxc∈C{xia,c}. For every agent a such that xia > 1,

set dia such that
∑

c∈C min{dia, xia,c} = 1.

agent a and every category c, (i) xa,c ∈ [0, 1] and (ii)
∑

a′∈A xa′,c ≤ qc. I denote by

xa =
∑

c∈C xa,c the aggregate amount of capacity allocated to agent a at the preal-

location x. Axioms 1-4 are defined analogously over preallocations. For any demand

vector d = (da)a∈A, it is also useful to define x(d) to be the preallocation calcu-

lated by the capacity allocation stage; that is, for every agent-category pair (a, c),

xa,c(d) = min{da,max{qc −
∑

a′∈Âa,c
da′ , 0}} if a is eligible for c and xa,c(d) = 0 oth-

erwise. Similarly, for any preallocation x, let d(x) be the demand vector calculated

by the demand adjustment stage. That is, for every agent a, da(x) = 1 if xa < 1,

da(x) = maxc∈C{xa,c} if xa = 1, and
∑

c∈C min{da(x), xa,c} = 1 if xa > 1.

At the start of the SR algorithm, no agent is allocated any capacity and each

agent has a demand of 1. An agent’s demand can be interpreted as the amount

of capacity that an agent requires from any category to be allocated one unit in

aggregate. Throughout the algorithm, demands fall as agents are allocated capacity.

The first round starts with the capacity allocation stage, which calculates a preal-

location x1 = x(d0) as follows. Each category allocates one unit of capacity to each

of its highest-priority agents until it has less than one unit of capacity left or has al-

located a unit to every eligible agent, whichever comes first. The next agent receives

the remaining capacity (which could be 0 or any number smaller than 1), and the

remaining agents are not allocated any capacity.

At x1, some agents may be allocated more than one unit in aggregate. To turn

x1 into an allocation, the demand adjustment stage updates the demand vector to

d1 = d(x1). The demand of an agent who has not yet been allocated a unit in

aggregate remains one (i.e., d1a = 1 if x1
a < 1). The demand of an agent who has been

allocated exactly one unit in aggregate falls to the maximum capacity she is allocated

from any category (i.e., d1a = maxc∈C{x1
a,c} if x1

a = 1). The demand of an agent who
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Round 1 Round 2
c1 (1) c2 (1) c3 (1) c4 (1) c1 (1) c2 (1) c3 (1) c4 (1)

a1 1 a1 1 a1 1 a4 1 a1 1/3 a1 1/3 a1 1/3 a4 1

a2 0 a2 0 a3 0 a5 0 a2 2/3 a2 2/3 a3 2/3 a5 0

a3 0 a4 0 a3 0 a4 0

Round 3 Round 4
c1 (1) c2 (1) c3 (1) c4 (1) c1 (1) c2 (1) c3 (1) c4 (1)

a1 1/3 a1 1/3 a1 1/3 a4 1 a1 1/3 a1 1/3 a1 1/3 a4 5/6

a2 1/2 a2 1/2 a3 2/3 a5 0 a2 1/2 a2 1/2 a3 2/3 a5 1/6

a3 1/6 a4 1/6 a3 1/6 a4 1/6

Table 3. SR algorithm applied to Example 1.

has been allocated more than one unit in aggregate falls to the level that ensures this

agent keeps exactly one unit (i.e.,
∑

c∈C min{d1a, x1
a,c} = 1 if x1

a > 1).

Every subsequent Round i starts with a demand vector di−1 and calculates a preal-

location xi = x(di−1) in the capacity allocation stage. The highest-priority agents are

allocated their demand until there is not enough capacity for the next agent. That

agent receives whatever capacity remains, and lower-priority agents are not allocated

any capacity. The demand adjustment stage calculates di = d(xi) and the algorithm

continues in Round i+ 1, in which xi+1 = d(xi) and di+1 = d(xi+1) are calculated.

I next illustrate the SR algorithm with an example.

Example 1. There are five agents and four categories, each with a quota of 1. Every

agent is eligible for every category and the priorities are πc1 : a1, a2, a3, . . ., πc2 :

a1, a2, a4, . . ., πc3 : a1, a3, . . ., πc4 : a4, a5, . . . .

The preallocation calculated in each of the first four rounds of the SR algorithm is

displayed in Table 3. In Round 1, each category allocates one unit of capacity to its

highest-priority agent. As agent a1 is allocated a unit from three different categories,

her demand drops to 1/3. In Round 2, categories c1, c2, and c3 only allocate 1/3 to

a1, which leaves 2/3 to allocate to their second highest-priority agents. As a result,

a2 is allocated 4/3 in aggregate (2/3 from each of c1 and c2); therefore, her demand

drops to 1/2. In Round 3, c1 and c2 allocate 1/3 to a1 and 1/2 to a2; hence, they

have 1/6 left to allocate to their third highest-priority agents a3 and a4. Agent a4 is

now allocated 7/6 in aggregate (1/6 from c2 and 1 from c4); hence, her demand drops

to 5/6. In Round 4, c4 only needs to allocate 5/6 to a4 and can therefore allocate



12 DAVID DELACRÉTAZ

1/6 to its second highest-priority agent a5. Every agent is now allocated at most one

unit; therefore, the SR algorithm has found the following allocation:

x4 =



c1 c2 c3 c4

a1 1/3 1/3 1/3 0

a2 1/2 1/2 0 0

a3 1/6 0 2/3 0

a4 0 1/6 0 5/6

a5 0 0 0 1/6


with ρ(x4) =

( a1 a3 a3 a4 a5

1 1 5/6 1 1/6
)
.

It is easy to verify that x4 satisfies Axioms 1-4. At first sight, it might look as if x4 is

not category neutral because a4 is allocated 1/6 from c2 and 5/6 from c4. However,

there is no violation as c2 can only allocate 1/6 to a4 after having allocated 1/3 to a1

and 1/2 to a2; formally, x4
a4,c2

+
∑

a∈Âa4,c2
x4
a,c2

= 1/6 + 1/3 + 1/2 = 1 = qc2 .

4.2. Outcome of the SR Algorithm. I first illustrate how, in contrast to Ex-

ample 1, the SR allocation may never find an allocation. I then show that the SR

algorithm still converges to an allocation, even when it does not reach one.

Example 2. There are four agents and three categories. The priorities and quotas are

πc1 : a1, a2, a3, a4, ∅, πc2 : a3, a2, a1, a4, ∅, πc3 : a1, a3, a2, a4, ∅, qc1 = qc2 = 1, qc3 = 2.

The operation of the SR algorithm is displayed in Table 4. In Round 1, c1 and c2

each allocate one unit to their highest-priority agent, a1 and a3, respectively. Cate-

gory c3 has two units and allocates them to its two highest-priority agents, a1 and

a3. Agents a1 and a3 are each allocated a unit from two different categories; hence,

their demands drop to 1/2. In Round 2, c1 and c2 each have an extra half-unit to

allocate, which goes to their second highest-priority agent a2, while c3 has an extra

unit to allocate to its third highest-priority agent, who is also a2. As a result, a2’s

demand drops to 1/3. In Round 3, c1 allocates 1/6 to a3, c2 allocates 1/6 to a1, and

c3 allocates 2/3 to a4. At this point, the SR algorithm begins to cycle. Agent a1 (a3)

is allocated 7/6 in aggregate but can only be allocated 1/6 from c2 (c1) so her demand

is adjusted to 5/12. In Round 4, as a1 and a3’s demands have each dropped by 1/12,

c1 allocates an extra 1/12 to a3, c2 allocates an extra 1/12 to a1, and c3 allocates

an extra 1/6 to a4. As a result, a1 and a3 are each allocated 13/12 in aggregate in

Round 4, so their demands drop to 9/24. In Round 5, again half of the capacity
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Round 1 Round 2
c1 (1) c2 (1) c3 (2) c1 (1) c2 (1) c3 (2)

a1 1 a3 1 a1 1 a1 1/2 a3 1/2 a1 1/2

a2 0 a2 0 a3 1 a2 1/2 a2 1/2 a3 1/2

a3 0 a1 0 a2 0 a3 0 a1 0 a2 1

a4 0 a4 0 a4 0 a4 0 a4 0 a4 0

Round 3 Round 4
c1 (1) c2 (1) c3 (2) c1 (1) c2 (1) c3 (2)

a1 1/2 a3 1/2 a1 1/2 a1 5/12 a3 5/12 a1 5/12

a2 1/3 a2 1/3 a3 1/2 a2 1/3 a2 1/3 a3 5/12

a3 1/6 a1 1/6 a2 1/3 a3 3/12 a1 3/12 a2 1/3

a4 0 a4 0 a4 2/3 a4 0 a4 0 a4 5/6

Round 5 Round 6 Round 7 · · · Round i ≥ 3
dia1 = dia3 17/48 33/96 65/192 · · · (2i−1 + 1)/(3 · 2i−1)
xi
a3,c1

= xi
a1,c2

7/24 15/48 31/96 · · · (2i−2 − 1)/(3 · 2i−2)
xi
a4,c3

11/12 23/24 47/48 · · · (3 · 2i−3 − 1)/(3 · 2i−3)

Table 4. SR algorithm applied to Example 2.

released by a1 and a3 goes to a4 (c3 allocates an extra 1/12 to a4), and the other half

comes back to a1 and a3 (c1 and c2 allocate an extra 1/24 to a3 and a1, respectively).

The SR algorithm continues to cycle forever, with the amount of reallocated capacity

halving in each round. The SR algorithm never reaches an allocation in Example 2;

however, it converges to one in which a4 receives 1 from c4 and each of a1, a2, and a3

receives 1/3 from each category. As the next result shows, this property generalizes.

Theorem 1. The SR algorithm converges to an allocation ξSR = limi→∞ xi.

I call ξSR the simultaneous reserve (SR) allocation and discuss its properties

in Section 4.3.4 To understand the intuition behind Theorem 1, it is useful to define

for every Round i the allocation ξi = (ξia,c)a∈A,c∈C such that, for every agent a and

every category c, ξia,c = min{dia, xi
a,c}.5 I also define the matrix zi = xi − ξi to be the

excess supply in Round i of the SR algorithm. I denote the total excess supply by

|zi| =
∑

a∈A zia =
∑

a∈A
∑

c∈C zia,c. The excess supply corresponds to the amount of

capacity that agents are allocated in addition to the unit they require; therefore, the

4In Section 5, I propose a polynomial-time algorithm to calculate the SR allocation.
5I formally show that ξi is an allocation in Appendix A (Lemma A.3).
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total excess supply is the amount of capacity that will be reallocated in the next round.

In Example 2, the total excess supply is 1/3 in Round 3 (a1 and a3 are each allocated

7/6 in aggregate) and is halved in every subsequent round; hence, it converges to

zero. This property generalizes for two reasons. First, until they are allocated one

unit in aggregate, agents permanently keep the capacity allocated to them; therefore,

the excess supply weakly decreases from one round to the next. Second, as excess

supply is reallocated, categories allocate capacity further down their priority order;

eventually, categories must reach the bottom so there is an upper bound on how

much excess supply can be reallocated throughout the algorithm. As the amount of

capacity reallocated converges to zero, in the limit every agent is allocated at most

one unit so xi converges to an allocation.

Example 2 has three categories, which leaves open the question of whether the

SR algorithm finds an allocation in finitely many rounds when there are only two

categories. The next result provides an affirmative answer.

Proposition 1. Suppose that |C| = 2. Then, the SR algorithm finds the SR allocation

after fewer than 8|A| rounds.

Proposition 1 implies that the SR algorithm works in polynomial time when there

are only two categories, as the number of rounds required increases linearly with the

number of agents. Intuitively, the reason the SR algorithm does not find an allocation

in Example 2 is as follows. In each round, a1 obtains additional capacity from c2.

That capacity is reallocated in the next round: half of it goes to a3 through c1 and

the other half goes through a4 through c3. Similarly, half of the extra capacity that

a3 obtains from c1 is reallocated to a1 through c2 and the other half is reallocated

to a4 through c3. Such a situation cannot occur when there are only two categories

because the additional amount of capacity that an agent obtains from one category

can only be reallocated through the other category.

4.3. Properties of the SR Allocation. Having defined the SR allocation, I now

turn to its properties in regard to the axioms defined in Section 3.

Theorem 2. The SR allocation satisfies Axioms 1-4.

In every Round i of the SR algorithm, xi satisfies Axioms 1-3 because each category

allocates its capacity to its eligible agents in order of priority. The reason xi also
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satisfies Axiom 4 is found in the demand adjustment stage. An agent’s demand sets

an upper bound on how much capacity each category can allocate to that agent in

subsequent rounds; thus, it ensures that all categories that are able to allocate that

upper bound do so. Then, these categories allocate the same amount of capacity to

that agent. As I show in Appendix B, these properties continue to hold in the limit.

A question arising from Theorem 2 is whether the SR allocation is the only one to

satisfy Axioms 1-4. The next example provides a negative answer; however, I show

that all allocations satisfying Axioms 1-4 generate the same aggregate allocation.

Example 3. There are two agents and two categories, each with a quota of 1. The

priorities are πc1 : a1, a2, ∅ and πc2 : a2, a1, ∅.

In Example 3, for any λ ∈ [0.5, 1], the following allocation satisfies Axioms 1-4:

ξλ =

( c1 c2

a1 λ 1− λ

a2 1− λ λ

)
.

To see this, notice that ξλ trivially satisfies Axioms 1-3 since every agent is eligible

for every category and ξλa1 = ξλa2 = 1. If λ = 0.5, then ξλ is also trivially category

neutral since all four elements of ξλ are equal to 0.5. If λ > 0.5, then ξλa1,c2 < ξλa1,c1
and ξλa2,c1 < ξλa2,c2 ; however, Axiom 4 is not violated since ξλa1,c2 + ξλa2,c2 = 1 = qc2 and

ξλa2,c1 + ξλa1,c1 = 1 = qc1 . In the special case where λ = 1, ξλ is the SR allocation.

Note one aspect of Example 3: for every λ ∈ [0.5, 1], a1 and a2 are each allocated

one unit in aggregate; that is, ρ(ξλ) = ρ(ξSR) for every λ ∈ [0.5, 1]. The next result

shows that this property generalizes. I call the aggregate allocation ρ(ξSR) generated

by the SR allocation the SR aggregate allocation and I call any allocation ξ SR

equivalent if it generates the SR aggregate allocation, that is, if ρ(ξ) = ρ(ξSR).

Theorem 3. Every allocation that satisfies Axioms 1-4 is SR equivalent.

The significance of Theorem 3 is that even though many allocations may satisfy

Axioms 1-4, any difference among them is immaterial, as every agent is allocated

the same capacity in aggregate. Moreover, Theorem 3 characterizes the SR aggregate

allocation as the only aggregate allocation that is generated by an allocation satisfying
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Axioms 1-4. Finally, Theorem 3 is sharp in the sense that each of the four axioms is

needed to characterize the SR aggregate allocation.

Proposition 2. For each of Axioms 1-4, there exists a rationing problem in which

an allocation that is not SR equivalent satisfies the other three axioms.

Having characterized the SR aggregate allocation, I return to the SR allocation

and show that it is characterized by Axioms 1-4 and an additional simple property.

Proposition 3. For every allocation ξ∗ ̸= ξSR satisfying Axioms 1-4, d(ξ∗) < d(ξSR).

Proposition 3 characterizes the SR allocation as the allocation satisfying Axioms 1-

4 with the largest demand. The intuition is as follows. The SR algorithm initially sets

every agent’s demand to one, the largest possible level. In each round, it calculates

a preallocation that satisfies Axioms 1-4 and reduces the demands to eliminate the

excess supply. Therefore, the SR algorithm finds in each round an upper bound for

the demand in any allocation satisfying Axioms 1-4 and converges to an allocation

whose demand has been reduced just enough to satisfy Axioms 1-4.

A novelty of this paper is that an agent may receive parts of an indivisible unit

from different categories, which does not cause any practical problem as long as such

an agent is allocated one unit in aggregate. However, some agents may obtain an

amount of capacity strictly between zero and one at the SR aggregate allocation, as

seen in Example 1: a3 and a5 obtain 5/6 and 1/6, respectively. A common approach

(see, e.g., Budish, Che, Kojima, and Milgrom, 2013; Kesten and Ünver, 2015) is,

for each agent a, to treat ξSRa as a probability. The Birkhoff-von Neuman theorem

(Birkhoff, 1946; Von Neumann, 1953) guarantees the existence of a lottery such that

each agent a is allocated a unit with probability ξSRa . In Example 1, the last unit

would be allocated to a3 with probability 5/6 and to a5 with probability 1/6. The

next result shows that the number of agents affected by that lottery is limited.

Proposition 4. At the SR aggregate allocation, at most |C| agents are allocated an

amount of capacity strictly between zero and one.

The intuition for Proposition 4 is that as ξSR respects priorities, each category

allocates capacity to at most one agent who is not allocated one unit in aggregate;
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hence, the number of agents who are allocated some capacity but less than one unit

in aggregate cannot exceed the number of categories. In practice, the number of

categories is typically much smaller than the number of agents; therefore, the vast

majority of agents are allocated either zero or one unit at ρSR.

In practice, agents often have to declare (and provide evidence) that they meet

criteria that would give them a higher priority; hence, they might be able to lower their

priority for some categories. Some reserve systems have been shown to be manipulable

in that way; for example, university applicants in Brazil and India may gain from not

revealing all categories for which they are eligible (Aygun and Bó, 2021; Sönmez and

Yenmez, 2021). It seems natural to think that the SR allocation does not suffer

from this drawback because the higher an agent’s priority for a category, the more

capacity she obtains from that category, and therefore the more capacity she obtains

in aggregate. The last result formalizes this intuition. Let R̂ = (A,C, (π̂c)c∈C , (qc)c∈C)

be a rationing problem that is identical to R except that the priority of some agent a

is lower for some categories. Formally, for every category c and for any two agents

b ∈ (A∪{∅})\{a} and b′ ∈ (A∪{∅})\{b} with bπcb
′, the new priority profile (π̂c)c∈C

satisfies bπ̂cb
′. I denote by ξ̂SR the SR allocation of R̂.

Proposition 5. ξSRa ≥ ξ̂SRa .

4.4. Random Precedence Order and Probabilistic Serial. As the SR allocation

lies in between “extreme” solutions found by sequential processing, one might think it

is equivalent to the ex ante allocation obtained by randomizing the precedence order.

The motivating example readily disproves this conjecture: Randomizing with equal

probability over the two possible precedence orders gives Claire, Dan, Eric, and Fiona

each an ex ante probability of 0.5, which differs from the SR aggregate allocation.

One might then wonder whether the SR aggregate allocation can be replicated by

allocating one unit at a time (see Kominers and Sönmez, 2016). In the motivating

example, either sequence walk-open-walk-open or open-walk-open-walk yields an SR-

equivalent allocation. However, in general, the answer is again negative.

Example 4. There are seven agents and two categories, each with a quota of 1. The

priorities are πc1 : a1, a3, a5, a7, . . . and πc2 : a2, a1, a4, a3, a6, . . ..
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c1 (3) c2 (3)

a1 1/2 a2 1

a3 1/2 a1 1/2

a5 1 a4 1

a7 1 a3 1/2

a6 0

(a) SR allocation in Example 4.

c1 (3) c2 (3)

a1 1 a2 1

a3 1 a1 0

a5 1 a4 1

a7 0 a3 0

a6 1

(b) Alternative allocation in Example 4.

Table 5. Two allocations in Example 4.

Table 5a displays the SR allocation in Example 4. In aggregate, every agent but

a6 is allocated a unit. Allocating one unit at a time—starting with either category—

yields the alternative allocation displayed in Table 5b, in which every agent but a7

is allocated one unit in aggregate. In general, sequentially allocating any amount of

capacity ϵ ∈ (0, 1] in either order yields the allocation from Table 5b. In the limit,

as ϵ approaches zero, this procedure converges to the probabilistic serial algorithm

of Bogomolnaia and Moulin (2001), in which categories “eat” agents. Example 4

therefore shows that the probabilistic serial and SR algorithms are not equivalent.

The key difference between sequential processing (even allocating a vanishingly small

amount of capacity at a time) and the SR algorithm is that, in the former, any

capacity allocation is final, while the latter allows the amount of capacity that a

category allocates to an agent to fall when the agent is allocated capacity from other

categories. In Example 4, the SR algorithm has c1 tentatively allocating one unit

each to a1 and a3, but this falls to half a unit once a1 and a3 are allocated capacity

from c2. In contrast, a sequential or probabilistic serial procedure has c1 allocating

one unit each to a1 and a3 permanently.

5. Simultaneous Reserve with Linear Programming

In this section, I show that the SR allocation can be computed in polynomial time

by adding linear programming to the SR algorithm.

5.1. Notation and Terminology. Fix a preallocation x that satisfies Axioms 1-

4. Agent a’s status for category c at x is qualified if xa,c ≥ da(x), marginal if

0 < xa,c < da(x), and unqualified if xa,c = 0. For every agent a, I denote by

Cx
Q(a) = {c ∈ C : xa,c ≥ da(x)}, Cx

M(a) = {c ∈ C : 0 < xa,c < da(x)}, and
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Cx
U(a) = {c ∈ C : xa,c = 0} the set of categories for which a is qualified, marginal,

and unqualified at x, respectively. For every category c, I denote by Ax
Q(c) = {a ∈ A :

xa,c ≥ da(x)}, Ax
M(c) = {a ∈ A : 0 < xa,c < da(x)}, and Ax

U(c) = {a ∈ A : xa,c = 0}
the set agents that are qualified, marginal, and unqualified for c at x, respectively.

I call each agent a an agent of interest at preallocation x if a is qualified for a

category and marginal for another. I denote by Ãx = {a ∈ A : Cx
Q(a) ∩ Cx

M(a) ̸= ∅}
the set of agents of interest, and for every category c and every status S ∈ {Q,M,U},
I denote by ÃS(c) = {a ∈ A : Ax

S(c) ∩ Ãx} the set of agents of interest whose

status for c at x is S. As x satisfies Axioms 1-4, each category c has at most one

marginal agent, i.e., |Ax
M(c)| ≤ 1 (see Lemma A.14 for a formal statement). For every

category c such that Ax
M(c) ̸= ∅, let a(c) be the agent who is marginal for c (i.e.,

Ax
M(c) = {ax(c)}) and let C̃x = {C ∈ C : ax(c) ∈ Ã} be the set of categories whose

marginal agent is an agent of interest. Finally, it will prove useful to adjust the quota

of each category c ∈ C̃x by removing the capacity allocated to agents who are not of

interest: q̃xc = qc −
∑

a∈Ax
Q(c)\Ãx xa,c.

5.2. SRLP Algorithm. The simultaneous reserve with linear programming (SRLP)

algorithm is formally defined in Algorithm 2. I first present the main result and then

provide intuition about how the SRLP algorithm works.

Theorem 4. The SRLP algorithm produces ξSR after fewer than 4|A||C| rounds.

Theorem 4 implies that the number of rounds required to find the SR allocation

is polynomial in |A||C|. As linear programming can be solved in polynomial time

(Khachiyan, 1979), it follows that the SRLP algorithm calculates the SR allocation

in polynomial time.

In both the SR and the SRLP algorithms, every agent is initially unqualified for

every category. Throughout both algorithms, agents are allocated capacity and their

status for some categories may change to marginal or qualified. As status changes

are irreversible, there can be at most 2|A||C| of them overall.6 The SRLP algorithm

is identical to the SR algorithm until either it finds an allocation (in which case

it terminates) or a round occurs without any change of status. In the latter case,

the SRLP algorithm updates the demands by solving a linear program. This step

6See Lemmas A.12, A.13, and C.7 for formal statements that status changes are irreversible.
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ALGORITHM 2: Simultaneous Reserve with Linear Programming (SRLP)

Initialization Set x0 = 0|A|×|C| and d0 = 1|A|.
Round i ≥ 1:

Capacity Allocation Set xi = x(di−1).
Termination If xi is an allocation, terminate and output xi.
Demand Adjustment If the status of at least one agent for one category has
changed between xi−1 and xi, set di = d(xi) and continue to Round i+ 1.

Linear Programming Solve the following linear program:

(LP 1)

max
(ξ

ax
i
(c),c

)
c∈C̃xi

∑
c∈C̃xi

ξa(c),c

subject to ξ
axi (c),c

≤
1−

∑
c′∈Cxi

M (axi (c))\{c} ξaxi (c),c′

|Cxi

Q (axi(c))|+ 1

and ξ
axi (c),c

≤ q̃x
i

c −
∑

a∈Ãxi
Q (c)

1−
∑

c′∈Cxi
M (a)

ξa,c′

|Cxi

Q (a)|
for every c ∈ C̃xi

.

Let the vector (ξ∗
axi (c),c

)
c∈C̃xi be the solution to (LP 1). For every agent a, set

dia =


1−

∑
c∈Cxi

M
(a)

ξ∗a,c

|Cxi
Q (a)|

if a ∈ Ãxi

da(x
i) if a ∈ A \ Ãxi

.

guarantees that, in the next round, either an allocation is found or a status has

changed. Thus, a change of status occurs every second round until an allocation is

found; hence, an allocation is found within 4|A||C| rounds.
The linear programming stage builds an allocation ξ that is identical to xi for all

agents that are not of interest. Agents of interest are allocated one unit in aggregate

and (LP 1) determines how that unit is split among categories by maximizing the

amount of capacity that agents receive from categories for which they are marginal,

with the maximization subject to two constraints: an agent cannot be allocated more

than her demand by any category and categories cannot allocate more than their

quotas. More precisely, consider a Round i in which the SRLP algorithm uses linear

programming and an agent-category pair (ax
i
(c), c) with c ∈ C̃. Agent ax

i
(c) is

allocated her demand from each category for which she is qualified and some amount

of capacity from each category for which she is marginal: |Cxi

Q (ax
i
(c))|daxi (c)(ξ) +∑

c′∈Cxi
M (axi (c))

ξaxi (c),c′ = 1. Cardinal monotonicity requires that ξaxi (c),c ≤ daxi (c)(ξ),

which by the previous equation gives the first constraint of (LP 1). Feasibility requires
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that ξaxi (c),c+
∑

a′∈Cxi
Q (c)

da′(ξ) ≤ q̃x
i

c , which again by using the previous equation gives

the second constraint of (LP 1). The solution to (LP 1) pins down an allocation ξ and

the demand vector di is set to d(ξ). By construction, the next round preallocation

xi+1 = x(di) is such that every agent who qualifies for at least one category at xi

is allocated exactly one unit in aggregate. Therefore, either xi+1 is an allocation or

there is an agent a who is not qualified for any category at xi and is allocated more

than one unit in aggregate at xi+1. In the latter case, a’s demand at da(x
i+1) falls

below what she receives from at least one category, so she qualifies for a category at

xi+1. Therefore, a status has changed between xi and xi+1.

5.3. Example. I illustrate the SRLP algorithm using Example 2. All statuses are the

same at x3 and x4 (see Table 4), so the SRLP algorithm enters the linear programming

stage in Round 4. The agents of interest are a3 and a1, who are marginal for c2 and

c1, respectively, and qualified for the other two categories. The linear program is

max
(ξa3,c1 ,ξa1,c2 )

ξa3,c1 + ξa1,c2 subject to

ξa3,c1 ≤ 1/3, ξa1,c2 ≤ 1/3, ξa3,c1 ≤ 2/3− (1− ξa1,c2)/2, ξa1,c2 ≤ 2/3− (1− ξa3,c1)/2.

Setting ξa3,c1 = ξa1,c2 = 1/3 makes all four constraints hold with an equality; hence,

the vector (ξ∗a3,c1 , ξ
∗
a1,c2

) = (1/3, 1/3) is the unique solution and the resulting demand

vector is d4 = (1/3, 1/3, 1/3, 1). In Round 5, the capacity allocation stage produces

x5 = ξSR, and therefore the SRLP algorithm ends and outputs the SR allocation.

6. Conclusion

This paper proposes a new solution to reserve systems that processes reserve cat-

egories simultaneously rather than sequentially. The key idea is to allow an agent

who is allocated one unit in aggregate to receive parts of that unit from different

categories. In fact, I show that the SR allocation is category neutral : if an agent

qualifies for multiple categories, she receives the same amount of capacity from each

of them. This is in stark contrast to sequential processing, in which an agent who

qualifies for multiple categories receives one unit from whichever is processed first. In

addition to being category neutral, the SR allocation satisfies three standard condi-

tions: compliance with eligibility criteria, nonwastefulness, and respect for priorities.

I show that any other allocation satisfying those four properties allocates the same
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amount of capacity to every agent in aggregate. Finally, I show that the SR allocation

can be computed in polynomial time.

I conclude by briefly describing four avenues for future research that arise from

this paper. First, it may be possible to tweak the SR algorithm to handle ties in the

priority profile. Priority ties are often present in real-world applications, and such

a solution would avoid having to break them through a lottery. Second, it would

be valuable to explore how the SR algorithm could be combined with the deferred

acceptance mechanism (or any other mechanism) such that it could be used in match-

ing markets. Third, it may be possible to generalize the approach to sharing rules

beyond category neutrality. If an agent qualifies for two categories, with sequential

processing, the category processed first allocates one unit to that agent, while with

the category neutrality condition, each category allocates half a unit to the agent.

One may consider any sharing rule in between, which would convexify the set of so-

lutions provided by sequential allocation. Last, when a category does not allocate its

entire quota due to a lack of eligible agents, it may be possible to increase efficiency

by relaxing the category neutrality condition to allow eligible agents to receive more

capacity from that category. Ultimately, I hope that the ideas presented in this paper

provide a new perspective on reserve systems and pave the way toward developing

and applying new solutions in a wide range of contexts.
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Appendix A. Properties of the SR Algorithm

Throughout this appendix, fix an agent a and a Round i ≥ 1 of the SR algorithm.

Lemma A.1. If xi
a > 1, then there exists a unique dia such that

∑
c∈C min{dia, xi

a,c} =

1. Moreover, dia ∈ (0,maxc∈C{xi
a,c}).

Proof. If dia ≤ 0, then
∑

c∈C min{dia, xi
a,c} ≤ 0 < 1. If dia ≥ maxc∈C{xi

a,c}, then∑
c∈C min{dia, xi

a,c} =
∑

c∈C xi
a,c = xi

a > 1. The expression
∑

c∈C min{dia, xi
a,c} is

continuous and strictly increasing in dia at every dia < maxc∈C{xi
a,c}. Therefore, there

exists a unique value of dia ∈ (0,maxc∈C{xi
a,c}) such that

∑
c∈C min{dia, xi

a,c} = 1. □
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Lemma A.2. xi is a preallocation and dia ∈ [1/|C|, 1].

Proof. (dia ∈ [0, 1]) Suppose that dia /∈ [0, 1]. Then, by definition, xi
a ≥ 1. If xi

a = 1,

then dia = maxc∈C{xi
a,c}. If xi

a > 1, then dia ∈ (0,maxc∈C{xi
a,c}) by Lemma A.1. In

both cases, there is a category c such that xi
a,c /∈ [0, 1]. Then, a is eligible for c;

hence, xi
a,c = min{di−1

a ,max{qc −
∑

a′∈Âa,c
di−1
a′ , 0}}, which implies that di−1

a /∈ [0, 1].

By induction, it follows that d0a /∈ [0, 1], a contradiction since d0a = 1.

(xi is a preallocation) Fix a category c. If xi
a,c /∈ [0, 1], it was established above

that di−1
a /∈ [0, 1], a contradiction. It remains to show that

∑
a′∈A xi

a′,c ≤ qc. If∑
a′∈A xi

a′,c > qc, then there exists an agent b such that xb,c > 0 and xi
b,c+

∑
a′∈Âb,c

xi
a′,c >

qc. By definition, xi
b,c ≤ di−1

a′ for all a′ ∈ Âb,c so x
i
a′,c+

∑
a′∈Âb,c

di−1
a′ > qc. By definition,

xi
b,c ≤ max{qc −

∑
a′∈Âb,c

di−1
a′ , 0}; therefore, it must be that xb,c = 0, a contradiction.

(dia ≥ 1/|C|) If xi
a < 1, then dia = 1 by definition. If xi

a = 1, then dia =

maxc∈C{xi
a,c}. As

∑
c∈C xi

a,c = 1 and xi
a,c ∈ [0, 1], we have maxc∈C{xi

a,c} ≥ 1/|C| so
dia ≥ 1/|C|. If xi

a > 1, then
∑

c∈C min{dia, xi
a,c} = 1; therefore, we have

∑
c∈C dia ≥ 1

so |C|dia ≥ 1, which is equivalent to dia ≥ 1/|C|. □

Lemma A.3. ξi is an allocation and ξia = min{xi
a, 1}.

Proof. (ξia = min{xi
a, 1}) Case 1 : xi

a ≤ 1. If xi
a < 1, then by definition dia = 1 and

xi
a,c < 1 for all c ∈ C. If xi

a = 1, then by definition dia = maxc∈C{xi
a,c}. Then,

xi
a,c ≤ dia for all c ∈ C so ξia =

∑
c∈C min{dia, xi

a,c} =
∑

c∈C xi
a,c = xi

a = min{xi
a, 1}.

Case 2 : xi
a > 1. By definition, dia satisfies

∑
c∈C min{dia, xi

a,c} = 1 so ξia =∑
c∈C min{dia, xi

a,c} = 1 = min{xi
a, 1}.

(ξi is an allocation) By definition, for every category c, ξia,c = min{dia, xi
a,c}. As

dia, x
i
a,c ∈ [0, 1], it follows that ξia,c ∈ [0, 1] and

∑
b∈A ξib,c ≤

∑
b∈A xi

b,c ≤ qc for every c.

Finally, ξa ≤ 1 follows from the above result that ξia = min{xi
a, 1}. □

Lemma A.4. ξia ≥ ξi−1
a and dia ≤ di−1

a .

Proof. By definition, ξ0a = 0 and d0a = 1 and, by Lemmas A.2 and A.3, ξia, d
i
a ∈ [0, 1];

therefore, the statement holds for Round 1: ξ1a ≥ ξ0a and d1a ≤ d0a. (As a was fixed

arbitrarily, the statement holds for every agent.) The remainder of the proof is by

induction. Suppose that ξi−1
a ≥ ξi−2

a and di−1
a ≤ di−2

a (induction hypothesis). I show

that ξia ≥ ξi−1
a and dia ≤ di−1

a .
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(ξia ≥ ξi−1
a ) Fix a category c. If a is not eligible for c, then by definition xi−1

a,c = xi
a,c =

0 so ξia,c = ξi−1
a,c = 0. If a is eligible for c, then by definition xi−1

a,c = min{di−2
a ,max{qc−∑

a′∈Âa,c
di−2
a′ , 0}}; therefore, ξi−1

a,c = min{di−1
a , di−2

a ,max{qc−
∑

a′∈Âa,c
di−2
a′ , 0}}. By the

induction hypothesis, di−1
a ≤ di−2

a ; hence ξi−1
a,c = min{di−1

a ,max{qc−
∑

a′∈Âa,c
di−2
a′ , 0}}.

By definition, xi
a,c = min{di−1

a ,max{qc −
∑

a′∈Âa,c
di−1
a′ , 0}}. The induction hypothesis

implies that di−1
a′ ≤ di−2

a′ for all a′ ∈ Âa,c; therefore, the last two equations imply that

xi
a,c ≥ ξi−1

a,c . As c was fixed arbitrarily, this holds for every category and we have

xi
a ≥ ξi−1

a . Combining Lemma A.3 with that result and the fact that ξi−1
a ≤ 1 yields

ξia = min{xi
a, 1} ≥ min{ξi−1

a , 1} = ξi−1
a , as required.

(dia ≤ di−1
a ) Case 1 : xi

a < 1. Lemma A.3 and the previously established result that

ξia ≥ ξi−1
a imply that min{xi

a, 1} = ξia ≥ ξi−1
a = min{xi−1

a , 1}. Combining this result

with the case assumption that xi
a < 1 yields xi−1

a < 1. By definition, it can therefore

be concluded that dia = di−1
a = 1.

Case 2 : xi
a ≥ 1. If xi

a = 1, then by definition dia = maxc∈C{xi
a,c}. If xi

a > 1,

then by definition
∑

c∈C min{dia, xi
a,c} = 1. Supposing that dia > maxc∈C{xi

a,c} yields∑
c∈C min{dia, xi

a,c} =
∑

c∈C xi
a,c = xi

a > 1, a contradiction. Therefore, the case as-

sumption that xi
a ≥ 1 implies that dia ≤ maxc∈C{xi

a,c}. By definition, maxc∈C{xi
a,c} ≤

di−1
a , which means that dia ≤ di−1

a . □

Lemma A.5. If ξia < 1, then dia = 1 and, if ξia = 1, then dia = maxc∈C{ξia,c}.

Proof. Case 1 : xi
a < 1. By Lemma A.3, ξia = xi

a < 1 and, by definition, dia = 1.

Case 2 : xi
a = 1. By Lemma A.3, ξia = xi

a = 1. By definition, dia = maxc∈C{xa,c}
and, for all c ∈ C, ξia,c = min{dia, xi

a,c}. Combining those two results implies that

ξia,c = xi
a,c for all c ∈ C, and therefore dia = maxc∈C{ξa,c}.

Case 3 : xi
a > 1. By Lemma A.3, ξia = 1 so it remains to show that dia =

maxc∈C{ξia,c}. If dia < maxc∈C{ξia,c}, then there exists c ∈ C such that dia <

ξia,c. However, by definition, ξia,c = min{dia, xi
a,c} ≤ dia, a contradiction. If dia >

maxc∈C{ξia,c}, then by definition dia > maxc∈C{min{dia, xi
a,c}}; therefore, dia > xi

a,c for

all c ∈ C and
∑

c∈C min{dia, xi
a,c} =

∑
c∈C xi

a,c = xi
a > 1. However, by definition,∑

c∈C min{dia, xi
a,c} = 1, a contradiction. □

Lemma A.6. ξia = 1 if and only if there exists a category c such that ξia,c = dia.
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Proof. If ξia < 1, then ξia,c < 1 for all c ∈ C and, by Lemma A.5, dia = 1; therefore,

ξia,c < dia for all c ∈ C. If ξia = 1, then dia = maxc∈C{ξia,c} by Lemma A.5; hence, there

exists c ∈ C such that ξia,c = dia. □

For the remainder of this appendix, fix a category c.

Lemma A.7. If either xi
a,c < di−1

a or ξia,c < dia, then, x
i
a′,c = 0 for every a′ ∈ Ǎa,c.

Proof. By definition, ξia,c < dia implies that ξia,c = xi
a,c; hence, by Lemma A.4, xi

a,c <

di−1
a . Fix an agent a′ ∈ Ǎa,c. If a

′ is not eligible for c, then xi
a′,c = 0 so I assume that a′

(hence a) is eligible for c. By definition, xi
a,c = min{di−1

a ,max{qc−
∑

ã∈Âa,c
di−1
ã , 0}} <

di−1
a , which implies that qc −

∑
ã∈Âa,c

di−1
ã < di−1

a . As aπca
′, it follows that qc −∑

ã∈Âa′,c
di−1
ã < 0 which by definition implies that xi

a′,c = 0. □

Lemma A.8. If ξia,c > 0, then, for every a′ ∈ Âa,c, x
i
a′,c = di−1

a′ and ξia′,c = dia′.

Proof. By assumption, a is eligible for c and qc >
∑

a′∈Âa,c
di−1
a′ . Fix an agent a′ ∈

Âa,c. The last inequality implies that qc > di−1
a′ +

∑
ã∈Âa′,c

di−1
ã , which is equivalent

to qc −
∑

ã∈Âa′,c
di−1
ã > di−1

a′ . As a is eligible for c, so is a′; hence, by definition,

xi
a′,c = di−1

a′ . By Lemma A.4, dia′ ≤ di−1
a′ , hence xi

a′,c ≥ dia′ . By definition, it follows

that ξia′,c = min{dia′ , xi
a′,c} = dia′ . □

Lemma A.9. If a is eligible for c and xi
a,c < di−1

a , then xi
a,c +

∑
a′∈Âa,c

xi
a′,c = qc.

Proof. Let b be the highest-priority agent such that xi
b,c < di−1

b . That is, xi
b,c < di−1

b

and, for every a′ ∈ Âb,c, x
i
a′,c = di−1

a′ . The assumption that xi
a,c < di−1

a ensures that

b exists and either b = a or bπca. Then, as a is eligible for c, so is b and we have

xi
b,c = min{di−1

a ,max{qc −
∑

a′∈Âb,c
di−1
a′ , 0}}. As xi

b,c < di−1
b and xi

a′,c = di−1
a′ for all

a′ ∈ Âb,c, it follows that xi
b,c = max{qc −

∑
a′∈Âb,c

xi
a′,c, 0}. As xi is a preallocation

(by Lemma A.2), it must be that
∑

a′∈Âb,c
xi−1
a′,c ≤ qc; therefore, we can conclude that

xi
b,c = qc −

∑
a′∈Âb,c

xi
a′,c or, equivalently, x

i
b,c +

∑
a′∈Âb,c

xi
a′,c = qc. On the one hand,

as either b = a or bπca, we have xi
a,c +

∑
a′∈Âa,c

xi
a′,c ≥ xi

b,c +
∑

a′∈Âb,c
xi
a′,c = qc. On

the other hand, as xi is an allocation, we have xi
a,c +

∑
a′∈Âa,c

xi
a′,c ≤ qc. Combining

the two statements yields xi
a,c +

∑
a′∈Âa,c

xi
a′,c = qc. □

Lemma A.10. xi satisfies Axioms 1-4 and ξi satisfies Axioms 1 and 3.
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Proof. (xi and ξi comply with eligibility requirements) By definition, if a is not eligible

for c, then xi
a,c = ξia,c = 0.

(xi is nonwasteful) Suppose that a is eligible for c and
∑

b∈A xi
b,c < qc. It needs to

be shown that xi
a ≥ 1. If xi

a,c < di−1
a , then Lemma A.9 yields xi

a,c+
∑

a′∈Âa,c
xi
a′,c = qc,

which contradicts the assumption that
∑

b∈A xi
b,c < qc. Therefore, we have x

i
a,c = di−1

a ,

in which case Lemma A.4 implies that xi
a,c = di−1

a ≥ dia. Then, by definition, ξia,c = dia

and, by Lemma A.6, ξia = 1; by definition, it follows that xi
a ≥ ξia = 1.

(xi and ξi respect priorities) By Lemma A.3, xi
a < 1 ⇔ ξia < 1 and, by definition,

xi
a,c = 0 ⇔ ξia,c = 0. It follows that xi respects priorities if and only if ξi does; hence,

it is enough to show that ξi respects priorities. If ξia < 1, Lemma A.6 implies that

ξia,c < dia so, by Lemma A.7, ξia′,c = 0 for every a′ ∈ Ǎa,c; hence, ξ
i respects priorities.

(xi is category neutral) Suppose that a is eligible for c and xi
a,c < maxc′∈C{xa,c′}. By

definition, maxc′∈C{xi
a,c′} ≤ di−1

a ; hence, we have xi
a,c < di−1

a . Then, by Lemma A.9,

we have xi
a,c +

∑
a′∈Âa,c

xi
a′,c = qc so xi is category neutral. □

Lemma A.11. zia,c ∈ [0, 1]. Moreover, |zi| = 0 if and only if xi = ξi.

Proof. (zia,c ∈ [0, 1]) By definition, zia,c = xi
a,c−ξia,c = xi

a,c−min{dia, xi
a,c} = max{xi

a,c−
dia, 0}. As xi

a,c, d
i
a ∈ [0, 1] (by Lemma A.2), it follows that zia,c ∈ [0, 1].

(|zi| = 0 if and only if xi = ξi) If xi = ξi, then, for every a′ ∈ A and c′ ∈ C,

xa′,c′ = ξa′,c′ so za′,c′ = xa′,c′ − ξa′,c′ = 0. It follows that |zi| =
∑

a′∈A
∑

c′∈C zia′,c′ = 0.

If xi ̸= ξi, then there exist a′ ∈ A and c′ ∈ C such that xi
a′,c′ ̸= ξia′,c′ so za′,c′ ̸= 0. As

zia′,c′ ∈ [0, 1] for every a′ ∈ A and c′ ∈ C, we have |zi| =
∑

a′∈A
∑

c′∈C zia′,c′ > 0. □

Lemma A.12. If xi
a,c < dia, then, for every Round j ≤ i, xj

a,c ≤ xi
a,c < dja.

Proof. If a is not eligible for c, then xj
a,c = 0 for every j ≥ 1 and the result holds as,

by Lemma A.2, dja > 0. I assume henceforth that a is eligible for c. By Lemma A.4,

the assumption that xi
a,c < dia implies that xi

a,c < di−1
a ; therefore, by definition, xi

a,c =

max{qc−
∑

a′∈Âa,c
di−1
a′ , 0}. Again by definition, xi−1

a,c ≤ max{qc−
∑

a′∈Âa,c
di−2
a′ , 0} and,

by Lemma A.4, di−2
a′ ≥ di−1

a′ for every a′ ∈ Âa,c; hence, we have xi−1
a,c ≤ xi

a,c < di−1
a .

By induction, the statement holds for every j < i− 1. □

Lemma A.13. If xi
a,c ≥ dia, then, for every j > i, xj

a,c = dj−1
a ≥ dja.

Proof. By the definition of, xi
a,c, the assumption that xi

a,c ≥ dia implies that max{qc−∑
a′∈Âa,c

di−1
a′ , 0} ≥ dia. By Lemma A.4, it follows that max{qc −

∑
a′∈Âa,c

dia′ , 0} ≥ dia,
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which by the definition of xi+1
a,c implies that xi+1

a,c = dia. Then, by Lemma A.4, it

follows that xi+1
a,c = dia ≥ di+1

a and the statement holds for all j > i by induction. □

For the next two lemmas, fix a preallocation x that satisfies Axioms 1-4.

Lemma A.14. (i) xa ≥ 1 if and only if Cx
Q(a) ̸= ∅,

(ii) |Ax
M(c)| ≤ 1,

(iii) For any a1 ∈ Ax
Q(c), a2 ∈ Ax

M(c), and a3 ∈ Ax
U(c), a1πca2πca3.

Proof. (i) If xa < 1, then da(x) = 1 so xa,c < da(x) for every c ∈ C, hence Cx
Q(a) = ∅.

If xa = 1, then da(x) = maxc∈C{xa,c}. If xa > 1, then
∑

c∈C min{da(x), xa,c} = 1 so

da(x) < maxc∈C{xa,c}. If follows that xa ≥ 1 implies that there exists c ∈ C such

that xa,c ≥ da(x), hence Cx
Q(a) ̸= ∅.

((ii) & (iii)) Fix an agent a. I show that a ∈ Ax
M(c) ∪ Ax

U(c) implies b ∈ Ax
U(c) for

every b ∈ Ǎa,c and that a ∈ Ax
Q(c)∪Ax

M(c) implies b ∈ Ax
Q(c) for every b ∈ Âa,c. Taken

together, these statements imply (ii) and (iii). Suppose that a ∈ Ax
M(c) ∪ Ax

U(c) and

consider an agent b ∈ Ǎa,c. It needs to be shown that xb,c = 0. If a is not eligible

for c, then neither is b so xb,c = 0 so I assume for the rest of the argument that a

is eligible for c. If xa < 1, then Axiom 3 implies that xb,c = 0. If xa ≥ 1, then by

(i) there exists a category c′ such that xa,c′ ≥ da(x) > xa,c so Axiom 4 implies that

xa,c+
∑

a′∈Âa,c
xa′,c = qc, hence xb,c = 0. Suppose that a ∈ Ax

Q(c)∪Ax
M(c) and consider

an agent b ∈ Ǎa,c. It needs to be shown that xb,c ≥ db(x). As xa,c > 0, Axiom 3

implies that xb = 1. Then, by (i), there exists c′ ∈ C such that xb,c′ ≥ db(x). As bπca,

xb,c +
∑

a′∈Âb,c
xb,c < qc and Axiom 4 implies that xb,c ≥ xb,c′ ≥ db(x). □

Lemma A.15. If a is eligible for c and xa,c < da(x), then xa,c +
∑

a′∈Âa,c
xa′,c = qc.

Proof. If xa < 1, then Axioms 2 and 3 imply that xa,c +
∑

a′∈Âa,c
xa′,c = qc. If xa = 1,

then by Lemma A.14(i) there exists a category c′ such that xa,c′ ≥ da(x). It follows

that xa,c < maxc′∈C{xa,c′}; hence, Axiom 4 implies that xa,c +
∑

a′∈Âa,c
xa′,c = qc. □

For the remaining two lemmas, fix an allocation ξ that satisfies Axioms 1-4.

Lemma A.16. ξa ≥ ξia and ξa,c ≤ dia.

Proof. By definition, ξa,c ≤ 1 = d0a. The remainder of the proof is by induction. I

assume that ξa,c ≤ di−1
a (induction hypothesis) and show that ξa ≥ ξia and ξa,c ≤ dia.
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(ξa ≥ ξia) As the result holds trivially when ξa = 1, I focus on the case in which

ξa < 1. I show that ξa,c ≥ ξia,c, which is sufficient since c was picked arbitrarily. As

this result holds trivially when ξia,c = 0, I focus on the case in which ξia,c > 0. As ξi

complies with eligibility requirements (Lemma A.10), it follows that a is eligible for c.

By definition, ξia,c ≤ max{qc −
∑

a′∈Âa,c
di−1
a′ , 0}; hence, the assumption that ξia,c > 0

implies that ξia,c ≤ qc −
∑

a′∈Âa,c
di−1
a′ . By the induction hypothesis, ξa′,c ≤ di−1

a′ for

every a′ ∈ Âa,c; therefore, the previous inequality implies that ξia,c+
∑

a′∈Âa,c
ξa′,c ≤ qc.

By assumption, ξ is nonwasteful and ξa < 1; hence, as a is eligible for c, we have

ξa,c +
∑

a′∈Âa,c
ξa′,c = qc. Combining the last two results yields ξa,c ≥ ξia,c.

(ξa,c ≤ dia) Suppose that ξa,c > dia. Then, d
i
a < 1 so Lemma A.5 implies that dia =

maxc′∈C{ξia,c′} and ξia = 1. Combining these results and recalling that ξa ≥ ξia yields

ξia,c ≤ maxc′∈C{ξia,c′} = dia < ξa,c ≤ maxc′∈C{ξa,c′} and ξia = ξa = 1. Then, there

exists c̃ ∈ C such that ξa,c̃ < ξia,c̃. Moreover, by definition, ξia,c̃ ≤ maxc′∈C{ξia,c′} so the

previous result that maxc′∈C{ξia,c′} < maxc′∈C{ξa,c′} implies that ξa,c̃ < maxc′∈C{ξa,c′}.
As ξ is category neutral, it follows that ξa,c̃ +

∑
a′∈Âa,c̃

ξa′,c̃ = qc̃. By definition, ξia,c̃ ≤
max{qc̃ −

∑
a′∈Âa′,c̃

di−1
a′ , 0}. As ξia,c̃ > ξa,c̃, we have that ξia,c̃ > 0, and therefore

ξia,c̃ ≤ qc̃−
∑

a′∈Âa′,c̃
di−1
a′ . By the induction hypothesis, ξa′,c̃ ≤ di−1

a′ for every a′ ∈ Âa,c̃;

hence, we have ξia,c̃+
∑

a′∈Âa′,c̃
ξa′,c̃ ≤ qc̃. It follows that ξ

i
a,c̃ ≤ ξa,c̃, a contradiction. □

Lemma A.17. If a is eligible for c, then ξa,c = min{da(ξ),max{qc−
∑

a′∈Âa,c
da′(ξ), 0}}.

Proof. If ξa,c = da(ξ), then ξa′,c = da′(ξ) for every a′ ∈ Âa,c by Lemma A.14(iii) so

da(ξ) +
∑

a′∈Âa,c
da′(ξ) ≤ qc. If 0 < ξa,c < da(ξ), then again ξa′,c = da′(ξ) for every

a′ ∈ Âa,c by Lemma A.14(iii). Therefore, by Lemma A.15, ξa,c +
∑

a′∈Âa,c
da′(ξ) = qc.

If ξa,c = 0, then
∑

a′∈Âa,c
ξa′,c = qc by Lemma A.15 and ξa′,c ≤ da′(ξ) for every a′ ∈ Âa,c

by definition since ξ is an allocation. Therefore, qc −
∑

a′∈Âa,c
da′(ξ) ≤ 0. □

Appendix B. Proof of the Results from Section 4

Proof of Theorem 1. Recall that, for every Round i, |zi| =
∑

a∈A
∑

c∈C zia,c. I use

analogous notation for xi and ξi: |xi| =
∑

a∈A
∑

c∈C xi
a,c and |ξi| =

∑
a∈A

∑
c∈C ξia,c.

I first show that the excess demand converges to zero. Fixing a Round i of the SR

algorithm, I show that |zi+1| ≤ |zi| and |zi| ≤ |A|(|C| − 1)/i).

(|zi+1| ≤ |zi|) By definition, |zi+1| = |xi+1| − |ξi+1| and |zi| = |xi| − |ξi| and,
by Lemma A.4, |ξi+1| ≥ |ξi|; hence, it remains to show that |xi+1| ≤ |xi|. Let
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c be a category such that
∑

a∈A xi
a,c < qc. If agent a is eligible for c, then, by

Lemma A.9, xi
a,c = dia. Otherwise, xi

a,c = 0 as xi satisfies Axiom 1 (Lemma A.10).

Letting Ac = {a ∈ A : aπc∅}, it follows that
∑

a∈A xi
a,c =

∑
a∈Ac

di−1
a . As categories

do not allocate more than their quotas at xi (Lemma A.2), it can be concluded

that |xi| =
∑

c′∈C xi
a,c′ =

∑
c′∈C min{qc′ ,

∑
a∈Ac′

di−1
a }. Analogous reasoning yields

|xi+1| =
∑

c′∈C min{qc′ ,
∑

a∈Ac′
dia}; therefore, Lemma A.4 implies that |xi+1| ≤ |xi|.

(|zi| ≤ |A|(|C| − 1)/i)) Fix an agent a and a category c. By definition,
∑i

j=1 z
j
a,c =∑i

j=1(x
j
a,c − ξja,c) =

∑i
j=1(x

j
a,c −min{dja, xj

a,c}) =
∑i

j=1 max{xj
a,c − dja, 0}. If xj

a,c ≤ dja

for all j = 1, . . . , i, then
∑i

j=1 z
j
a,c = 0. Otherwise, let k = 1, . . . , i be the first round

such that xk
a,c > dka (hence, xj

a,c ≤ dja for all j = 1, . . . , k− 1). Then, by Lemma A.13,

xj
a,c = dj−1

a for all j = k+1, . . . , i, and therefore
∑i

j=1 z
j
a,c =

∑i
j=1max{xj

a,c−dja, 0} =∑i
j=k(x

j
a,c − dja) = xk

a,c − dia. As x
k
a,c ≤ 1 and dia ≥ 1/|C| (Lemma A.2), it follows that∑i

j=1 z
j
a,c ≤ 1− 1/|C|. As the latter bound is the larger one of the two cases, it holds

for every agent-category pair. Therefore, we have
∑i

j=1 |zj| ≤ |A||C|(1 − 1/|C|) =

|A|(|C| − 1). As the excess demand decreases throughout the algorithm, it follows

that i|zi| ≤
∑i

j=1 |zj| ≤ |A|(|C| − 1), which implies that |zi| ≤ |A|(|C| − 1)/i.

The last result established that limi→∞ |zi| = 0. As every element of zi is by defini-

tion weakly positive, it follows that limi→∞ zi = 0; therefore, limi→∞ xi = limi→∞ ξi

and ξSR = limi→∞ ξi. I use the latter result to show that ξSR is an allocation.

(ξSRa,c ∈ [0, 1]) Case 1: ξia,c < dia for every i ≥ 1. By definition, the case assumption

yields xi
a,c < dia, which by Lemma A.12 implies that xj

a,c ≤ xi
a,c < dja for every j ≤ i.

By definition, it follows that the series {ξia,c}∞i=1 is weakly increasing. By Lemma A.3,

that series is also bounded; therefore, the Monotone Convergence Theorem implies

that limi→∞ ξia,c is equal to the series’ supremum. Again by Lemma A.3, every element

of the series {ξia,c}∞i=1 is an element of [0, 1]; hence, so is its supremum.

Case 2: ξia,c = dia for some i ≥ 1. By definition, the case assumption yields

xi
a,c ≥ dia; hence, Lemma A.13 implies that xj

a,c ≥ dja for every j ≥ i. Again by

definition, we have ξja,c = dja for all j ≥ i, which implies that limi→∞ ξia,c = limi→∞ dia

so it remains to show that limi→∞ dia ∈ [0, 1]. The series {dia}∞i=1 is weakly decreasing

by Lemma A.4 and bounded below by Lemma A.2. By the Monotone Convergence

Theorem, limi→∞ dia is then equal to the infimum of the series {dia}∞i=1. By Lemma A.2,

every element of that series is an element of [1/|C|, 1]; hence, so is its infimum.
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(
∑

a′∈A ξSRa′,c ≤ qc) As limi→∞ ξi = ξSR, we have limi→∞(
∑

a′∈A ξia′,c) =
∑

a′∈A ξSRa′,c.

Then, the series {
∑

a′∈A ξia′,c}∞i=1 converges to a finite number and, as ξi is an allocation

for every i (Lemma A.3), is bounded above by qc. Therefore, the series converges to

a number no greater than qc and
∑

a′∈A ξSRa′,c = limi→∞(
∑

a′∈A ξia′,c) ≤ qc.

(ξSRa ≤ 1) As limi→∞ ξi = ξSR, we have limi→∞(ξia) = ξSRa . Then, the series {ξia}∞i=1

converges to a finite number and, as ξi is an allocation for every i (Lemma A.3), is

bounded above by 1. Therefore, the series converges to ξSRa = limi→∞(ξia) ≤ 1. □

Proof of Proposition 1. This proof uses the notation and terminology introduced in

Section 5.1. The main part of the proof consists of showing the following.

Claim 1. Suppose that, for some i ≥ 2, the status of every agent a for every category c

is the same at xi−1, xi, and xi+1. Then, xi+1 is an allocation.

Proof. Let a be an agent who is not marginal for either category at xi. If a is

unqualified for a category, then she receives either 0 or 1 from the other, as otherwise

she would be marginal for it. It follows that di−1
a = dia = di+1

a = 1, xi−1
a = xi

a =

xi+1
a ∈ {0, 1}, and, for each c, xi−1

a,c = xi
a,c = xi+1

a,c ∈ {0, 1}. If instead a is qualified for

both categories, then, as di−1
a ≥ 0.5 by Lemma A.2, it must be that xi−1

a,c ≥ 0.5 for

each c. By definition, it follows that di−1
a = 0.5. By Lemmas A.2 and A.4, we then

have di−1
a = dia = di+1

a = 0.5, which, by Lemma A.13, yields xi
a,c = xi+1

a,c = 0.5 for

each c. We conclude that, for every agent a who is not marginal for either category,

and for every category c,

(1) xi
a,c = xi+1

a,c ∈ {0, 0.5, 1}, xi
a = xi+1

a ∈ {0, 1}, di−1
a = dia = di+1

a ∈ {0.5, 1}.

By (1), every agent a who is not marginal for either category is allocated at most

one unit in aggregate. It remains to show that this is also the case for those agents

who are marginal for at most one category. As there are only two categories, by

Lemma A.14 there are at most two agents of interest at xi. I consider three cases.

Case 0 : zero agents of interest. Let b be an agent who is marginal for a category.

We need to show that xi+1
b ≤ 1. If b is only marginal for one category, then by the

case assumption she is unqualified for the other and xi+1
b ≤ 1. If b is marginal for

both categories, then xi+1
b,c ≤ di+1

b for each c; hence, xi+1
b < 1 by Lemmas A.3 and A.6.

Case 1 : one agent of interest. Let agent a1 be marginal for category c1 and qualified

for category c2. If c2 has a marginal agent a2, by the case assumption a2 is unqualified
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for c1 so xi+1
a2

≤ 1. Therefore, it remains to show that xi+1
a1

≤ 1. As a1 is marginal for

c1, x
i−1
a1,c1

< di−1
a1

so, by Lemma A.9, xj
a1,c1

= qc1−
∑

a′∈Âa1,c1
xj
a′,c1

for j = i, i+1. As, by

(1), xi
a′,c1

= xi+1
a′,c1

for every a′ ∈ Âa1,c1 , it follows that x
i
a1,c1

= xi+1
a1,c1

. As a1 is qualified

for c2, x
i
a1,c2

≥ dia1 so Lemma A.13 implies that xi+1
a1,c2

= dia1 . Moreover, by Lemma A.6,

ξia = 1, which by definition is equivalent to min{xi
a1,c1

, dia1} + min{xi
a1,c2

, dia1} = 1.

Then, the assumption that xi
a1,c1

< dia1 ≤ xi
a1,c2

implies that xi
a1,c1

+ dia1 = 1, which

combined with our two previous results yields xi+1
a1,c1

+ xi+1
a1,c2

= 1.

Case 2 : two agents of interest. Let a1 (respectively a2) be the agent who is marginal

for c1 (c2) and qualified for c2 (c1). I assume w.l.o.g. that xi+1
a1

≥ xi+1
a2

and show that

xi+1
a1

≤ 1. By Lemma A.9, xi+1
a1,c1

+
∑

a′∈Âa1,c1
xi+1
a′,c1

= qc1 so
∑

a∈A xi+1
a,c1

= qc1 (since

xi+1 is a preallocation). Analogous reasoning for c2 yields
∑

a∈A xi+1
a,c2

= qc2 ; hence, it

can be concluded that
∑

a∈A xi+1
a = q. As q is an integer and, by (1), xi+1

a ∈ {0, 1}
for every a ̸= a1, a2, x

i+1
a1

+ xi+1
a2

must also be an integer. Suppose that xi+1
a1

> 1. As

xi+1
a2,c1

≥ di+1
a2

, Lemmas A.3 and A.6 imply that xi+1
a2

≥ 1; hence, as xi+1
a1

+ xi+1
a2

is an

integer, xi+1
a1

+ xi+1
a2

≥ 3. It follows that xi+1
a1

≥ 1.5; hence xi+1
a1,c1

, xi+1
a1,c2

≥ 0.5. By

definition, we have that di+1
a1

= 0.5 so xi+1
a1,c1

≥ di+1
a1

, a contradiction. □

In Round 1, at least one unit is allocated (since q ≥ 1) so either an agent becomes

qualified for a category or one agent becomes marginal for each category; hence, at

least two statuses change. Thereafter, by Claim 1, every second round either a status

changes or an allocation is found. By Lemmas A.12 and A.13, status changes are

irreversible, therefore there can be at most 4|A| of them throughout the SR algorithm.

It follows that an allocation is found by Round 8|A| − 1. □

Proof of Theorem 2. In every Round i, ξi satisfies Axioms 1 and 3 and xi satisfies

Axioms 1-4 by Lemma A.10. As was shown in the proof of Theorem 1, ξSR =

limi→∞ ξi = limi→∞ xi. Arbitrarily fixing an agent-category pair (a, c) and using

those two results, I show that ξSR satisfies Axioms 1-4.

(Axiom 1) If a is not eligible for c, then xi
a,c = 0 in every Round i as xi satisfies

Axiom 1. Therefore, ξSRa,c = limi→∞ xi
a,c = 0.

(Axiom 2) If a is eligible for c and
∑

b∈A ξSRb,c < qc, then limi→∞
∑

b∈A xi
b,c < qc so

there exists a Round j such that, for all i ≥ j,
∑

b∈A xi
b,c < qc. As xi is nonwasteful

and a is eligible for c, xi
a ≥ 1 so ξia = 1 by Lemma A.3. Then, ξSRa = limi→∞ ξia = 1.



34 DAVID DELACRÉTAZ

(Axiom 3) Suppose that ξSRa < 1 and consider a lower-priority agent a′ ∈ Ǎa,c. By

Lemma A.4, for every Round i, ξia ≤ ξSRa < 1. As ξi respects priorities, it follows that

ξia′,c = 0, and therefore ξSRa′,c = limi→∞ ξia′,c = 0.

(Axiom 4) If a is eligible for c and ξSRa,c < maxc′∈C{ξSRa,c′}, then limi→∞ xi
a,c <

limi→∞ maxc′∈C{xi
a,c′}. Therefore, there exists a Round j such that, for all i ≥ j,

xi
a,c < maxc′∈C{xi

a,c′}. As xi is category neutral, xi
a,c +

∑
a′∈Âa,c

xi
a′,c = qc; therefore,

ξSRa,c +
∑

a′∈Âa,c
ξSRa′,c = limi→∞(xi

a,c +
∑

a′∈Âa,c
xi
a′,c) = qc. □

Proof of Theorem 3. Consider an allocation ξ∗ that satisfies Axioms 1-4 and suppose

that, for some agent b, ξ∗b ̸= ξSRb . By Lemma A.16, ξ∗a ≥ ξia for every agent a

and Round i, which implies that ξ∗a ≥ limi→∞ ξia = ξSRa . It follows that ξ∗b >

ξSRb , and therefore |ξ∗| > |ξSR|. Consequently, there exists a category c such that∑
a∈A ξ∗a,c >

∑
a∈A ξSRa,c . By definition,

∑
a∈A ξ∗a,c ≤ qc so

∑
a∈A ξSRa,c < qc. By

Theorem 1, limi→∞
∑

a∈A xi
a,c < qc; therefore, there exists a Round j such that∑

a∈A xi
a,c < qc for every i ≥ j. Then, by Lemma A.9, for every agent a who is

eligible for c, we have xi
a,c = di−1

a . By definition, ξia,c = min{dia, xi
a,c} = min{dia, di−1

a }
so, by Lemma A.4, ξia,c = dia. As ξ

∗
a,c ≤ dia by Lemma A.16 and ξ∗ satisfies Axiom 1,

we conclude that ξ∗a,c ≤ ξia,c for every a and every i ≥ j, which implies that ξ∗a,c ≤ ξSRa,c

for every a. It follows that
∑

a∈A ξ∗a,c ≤
∑

a∈A ξSRa,c , a contradiction. □

Proof of Proposition 2. Let there be three agents a1, a2, and a3 as well as two cate-

gories c1 and c2. For each of the four axioms, I construct quotas and priorities such

that an allocation that is not SR equivalent satisfies the other three axioms.

(Axiom 1) Let the quotas and priorities be qc1 = 2, qc2 = 1 πc1 : a1, ∅, a3, a2, and
πc2 : a2, ∅, a3, a1. The SR allocation ξSR is such that ξSRa1,c1

= ξSRa2,c2
= 1 and all other

elements are 0. The alternative allocation ξ such that ξa3,c1 = 1 and all other elements

are identical to ξSR is not SR equivalent and satisfies Axioms 2-4.

(Axiom 2) Let the quotas and priorities be qc1 = 2, qc2 = 1, πc1 : a1, a3, ∅, a2,
πc2 : a2, ∅, a3, a1. The SR allocation ξSR is such that ξSRa1,c1

= ξSRa2,c2
= ξSRa3,c1

= 1 and all

other elements are 0. The alternative allocation ξ such that ξa3,c1 = 0 and all other

elements are identical to ξSR is not SR equivalent and satisfies Axioms 1, 3, and 4.

(Axiom 3) Let the quotas and priorities be qc1 = 1, qc2 = 1, πc1 : a1, a3, a2, ∅,
πc2 : a1, a2, a3, ∅. The SR allocation ξSR is such that ξSRa2,c1

= ξSRa3,c2
= 0 and all other
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elements are 1/2. The alternative allocation ξ such that ξa1,c1 = ξa1,c2 = 1 and all

other elements are 0 is not SR equivalent and satisfies Axioms 1, 2, and 4.

(Axiom 4) Let the quotas and priorities be identical to the previous example. The

allocation ξ such that ξa1,c1 = ξa2,c2 = 1 and all other elements are 0 is not SR

equivalent and satisfies Axioms 1-3. □

Proof of Proposition 3. This proof uses some of the notation and terminology intro-

duced in Section 5.1. For some Round i of the SR algorithm, suppose that d(ξ∗) ≤ di−1

(induction hypothesis). I show that d(ξ∗) ≤ di. Fix an agent a and suppose that

da(ξ
∗) > dia. For every c ∈ Cξ∗

Q (a), ξ∗a,c = da(ξ
∗) so the assumption that da(ξ

∗) > dia

yields min{dia, xi
a,c} < ξ∗a,c. For every c ∈ Cξ∗

M (a)∪Cξ∗

U (a), ξ∗a,c < da(ξ
∗) so Lemma A.17

yields ξ∗a,c = max{qc −
∑

a′∈Âa,c
da′(ξ

∗), 0}. By definition, xi
a,c ≤ qc −

∑
a′∈Âa,c

di−1
a so

the induction hypothesis implies that xi
a,c ≤ ξ∗a,c, and therefore min{dia, xi

a,c} ≤ ξ∗a,c.

Combining the last two results yields
∑

c∈C min{dia, xi
a,c} <

∑
c∈C ξ∗a,c = ξ∗a. As ξ∗ is

an allocation, ξ∗a ≤ 1 so min{dia, xi
a,c} < 1. It follows that xi

a ≤ 1; however, in that

case dia = 1, which contradicts the assumption that da(ξ
∗) > dia. As d

0 = 1, the induc-

tion hypothesis holds in Round 1 so the preceding argument implies that d(ξ∗) ≤ di

in every Round i of the SR algorithm. It follows that the series {di}∞i=1 is bounded

below by d(ξ∗). As the series is decreasing (by Lemma A.4), the Monotone Conver-

gence Theorem implies that limi→∞ ξia,c is equal to the series’ infimum, which cannot

be smaller than d(ξ∗); therefore, d(ξ∗) ≤ d(ξSR). If d(ξ∗) = d(ξSR), then Lemma A.17

implies that ξ∗ = ξSR, a contradiction. We conclude that d(ξ∗) < d(ξSR). □

Proof of Proposition 4. Let a be an agent such that 0 < ξSRa < 1. By Lemma A.14(i),

a is not qualified for any category at ξSR; hence, by assumption, a is marginal for a

category. By Lemma A.14(ii), there are at most |C| agents in that situation. □

Proof of Proposition 5. This proof uses some of the notation and terminology in-

troduced in Section 5.1. Construct a rationing problem R̃ = (A,C, (π̃c)c∈C , (qc)c∈C),

which is identical to R except that a’s priority rank drops by one rank for some cat-

egory c̃. Formally, consider ã ∈ A ∪ {∅} such that aπcã and there is no a′ ∈ A ∪ {∅}
with aπca

′πcã. The priority profile (π̃c)c∈C is identical to (πc)c∈C except that a and

ã’s priorities for c̃ are reversed: ãπ̃ca and, for every tuple (b, b̃, c) ̸= (a, ã, c̃), bπ̃cb
′ if

and only if bπcb
′. Denote by ξ̃SR the SR allocation of R̃. As R̂ can be constructed
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from R through a series of priority reversals, by induction it is sufficient to show that

ξSRa ≥ ξ̃SRa . This result holds trivially if ξSRa = 1 so I assume throughout that ξSRa < 1.

By construction, every agent b ̸= a is eligible for the same subset of categories in R

and R̃, which I denote by CE(b) = {c ∈ C : bπc∅} = {c ∈ C : bπ̃c∅}. I first show that

d(ξ̃SR) ≤ d(ξSR) and then use this result to show that ξSRa ≥ ξ̃SRa .

For every i ≥ 1, denote by xi and x̃i (di and d̃i) the preallocation (demand vec-

tor) obtained in Round i of the SR algorithm over R and R̃, respectively. Fixing a

Round i, suppose that d̃i−1 ≤ di−1 (induction hypothesis). I show that d̃i ≤ di. Fix

an agent b ̸= a, ã and a category c ∈ CE(b). As b’s priority for c is the same in R and

R̃, {a′ ∈ A : a′π̃cb} = {a′ ∈ A : a′πcb} = Âb,c; therefore, x̃
i
b,c = min{d̃i−1

b ,max{qc −∑
a′∈Âb,c

d̃i−1
a′ , 0}} and xi

b,c = min{di−1
b ,max{qc −

∑
a′∈Âb,c

di−1
a′ , 0}}. If xi

b < 1, then

d̃ib ≤ dib = 1. If x̃i
b < 1, then by Lemma A.6 x̃i

b,c < d̃ia; hence, by Lemma A.4 and

the induction hypothesis, x̃i
b,c ≥ xi

b,c. As this holds for every category, xi
b ≤ x̃i

b < 1

so d̃ib ≤ dib = 1. If x̃i
b, x

i
b ≥ 1, then

∑
c∈CE(b) min{d̃ib, x̃i

a,c} =
∑

c∈CE(b) min{dib, xi
a,c} =

1. By Lemma A.4, it follows that
∑

c∈CE(b) min{d̃ib,max{qc −
∑

a′∈Âb,c
d̃i−1
a′ , 0}} =∑

c∈CE(b) min{dib,max{qc −
∑

a′∈Âb,c
di−1
a′ , 0}}; therefore, the induction hypothesis im-

plies that d̃ib ≤ dib. The argument for d̃iã ≤ diã is almost analogous, the only difference is

that ãπ̃c̃a, hence x̃
i
ã,c̃ = min{d̃i−1

ã ,max{qc̃−
∑

a′∈Âã,c̃\{a} d̃
i−1
a′ , 0}}. Finally, as ξSRa < 1,

Lemma A.4 implies that xi
a < 1, hence d̃ia ≤ dia = 1. As the induction hypothesis

holds in Round 1, d̃i ≤ di = 1 for every i, and therefore d(ξ̃SR) ≤ d(ξSR).

Consider next a category c and let AE(c) = {b ∈ A : bπc∅} and ÃE(c) = {b ∈
A : bπ̃c∅}. By construction, ÃE(c) = AE(c) \ {a} if c = c̃ and ã = ∅, and ÃE(c) =

AE(c) otherwise; hence ÃE(c) ⊆ AE(c). If
∑

b∈A ξSRb,c < qc, then by Lemma A.15∑
b∈A ξSRb,c =

∑
b∈AE(c) db(ξ

SR). As d(ξ̃SR) ≤ d(ξSR) and ÃE(c) ⊆ AE(c), it follows that∑
b∈ÃE(c) db(ξ̃

SR) ≤
∑

b∈AE(c) db(ξ
SR) < qc. Then, by the same argument

∑
b∈A ξ̃SRb,c =∑

b∈ÃE(c) db(ξ̃
SR), and therefore

∑
b∈A ξ̃SRb,c ≤

∑
b∈A ξSRb,c . This result holds trivially if∑

b∈A ξSRb,c = qc; hence, it holds for all categories and |ξ̃SR| ≤ |ξSR|. Consider finally an

agent b ̸= a, ã, I show that ξ̃SRb ≥ ξSRb . This is trivially satisfied if ξ̃SRb = 1 so I assume

that ξ̃SRb < 1. By Lemma A.17, for every c ∈ CE(b), ξ̃
SR
b,c = min{db(ξ̃SR),max{qc −∑

a′∈Âb,c
da′(ξ̃

SR), 0}} and ξSRb,c = min{db(ξSR),max{qc −
∑

a′∈Âb,c
da′(ξ

SR), 0}}. As

ξ̃SRb < 1, Lemma A.14(i) implies that db(ξ̃
SR) = 1 ≥ db(ξ

SR); therefore, as d(ξ̃SR) ≤
d(ξSR), we have ξ̃SRb ≥ ξSRb . The argument for ξ̃SRã ≥ ξSRã is almost analogous, the
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only difference is that ãπ̃c̃a so ξ̃SRã,c̃ = min{dã(ξ̃SR),max{qc̃−
∑

a′∈Âã,c̃\{a} da′(ξ̃
SR), 0}}.

As |ξ̃SR| ≤ |ξSR| and ξ̃SRb ≥ ξSRb for every b ̸= a, it must be that ξSRa ≥ ξ̃SRa . □

Appendix C. Properties of the SRLP Algorithm

I first show that the solution to (LP 1) is unique as long as its input xi is a preal-

location (Lemma C.1) and then show that xi is indeed an allocation (Lemma C.2).

Taken together, Lemmas C.1 and C.2 ensure that the SRLP algorithm is well defined.

Lemma C.1. For any preallocation x, (LP 1) has a unique solution.

Proof. For notational simplicity and as there is no risk of confusion, I omit the de-

pendency on x throughout the proof. First, note that the vector (ξa(c),c)c∈C̃ = 0|C̃|

satisfies all constraints so (LP 1) has a solution and it remains to show that there

cannot be multiple ones. For this purpose, I introduce some notation. Given a vector

(ξa(c),c)c∈C̃ , for every agent a′ ∈ Ã let Sa′ =
∑

c∈CM (a) ξa,c. Fix an agent a ∈ Ã and a

vector S−a = (Sa′)a′∈Ã\{a}. For every c ∈ CM(a), let

(2) θa,c = q̃c −
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|
= q̃c −

∑
a∈ÃQ(c)

1− Sa′

|CQ(a)|
.

Note that θa,c is the right-hand side of (LP 1)’s second constraint and is fixed by S−a.

Label the categories for which a is marginal such that CM(a) = {c1, c2, . . . , c|CM (a)|}
with θa,c1 ≥ . . . ≥ θa,c|CM (a)| . For every i = 1, . . . , |CM(a)|, let Ti =

1−
∑

j>i θa,cj
|CQ(a)|+i

and

define n = 0, 1, . . . , |CM(a)| as follows. If Ti > θa,ci for every i = 1, . . . , |CM(a)|, then
n = 0. Otherwise, n is the such that Tn ≤ θa,cn and Ti > θa,ci for every i > n.

Claim 2. For every i ≥ n, Ti > Ti+1.

Proof. Fix i ≥ n. It needs to be shown that Ti > Ti+1, which is equivalent to

θa,ci+1
<

1−
∑

j>i+1 θa,cj
CQ(a)|+i+1

. The latter inequality is satisfied as its right-hand side is equal

to Ti+1 and, since i+ 1 > n, θa,ci+1
< Ti+1. □

Consider the following linear program.
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(LP 2)

max
(ξa,ci )

|CM (a)|
i=1

|CM (a)|∑
i=1

ξa,ci

subject to (i) ξa,ci ≤
1−

∑
j ̸=i ξa,cj

|CQ(a)|+ 1

and (ii) ξa,ci ≤ θa,ci for every i = 1, . . . , |CM(a)|.

The linear program (LP 2) can be thought of as a version of (LP 1) in which S−a has

been fixed so it remains to choose the vector (ξa,ci)
|CM (a)|
i=1 to maximize Sa. To show

that (LP 2) has a unique solution, I first consider a restricted version. Fix a vector

(yi)i>n such that yi ≤ θa,ci for every i > n and consider the following linear program:

(LP 3)

max
(ξa,ci )

|CM (a)|
i=1

|CM (a)|∑
i=1

ξa,ci

subject to (i) ξa,ci ≤
1−

∑
j ̸=i ξa,cj

|CQ(a)|+ 1
for every i = 1, . . . , |CM(a)|

and (ii) ξa,ci = yi for every i > n.

(LP 3) is a restricted version of (LP 2), in which every ξa,ci with i > n is fixed.

Claim 3. For any (yi)i>n ≤ (θa,ci)i>n, the unique solution to (LP 3) is (ξ∗a,ci)
|CM (a)|
i=1

such that ξ∗a,ci =
1−

∑
j>n yj

|CQ(a)|+n
for every i ≤ n and ξ∗a,ci = yi for every i > n.

Proof. ((ξ∗a,ci)
|CM (a)|
i=1 satisfies all constraints) Constraint (ii) is satisfied for every i > n

by definition; hence, I focus on constraint (i).

Case 1 : i ≤ n. It needs to be shown that
1−

∑
j>n yj

|CQ(a)|+n
≤

1−
∑

j ̸=i ξ
∗
a,cj

|CQ(a)|+1
, which holds with

an equality since, by definition,

1−
∑
j ̸=i

ξ∗a,cj = 1− (n− 1)
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj =
(|CQ(a)|+ 1)(1−

∑
j>n yj)

|CQ(a)|+ n
.

Case 2 : i > n. It needs to be shown that ξ∗a,ci ≤
1−

∑
j ̸=i ξ

∗
a,cj

(|CQ(a)|+1
, which, using the

definition of (ξa,ci)
|CM (a)|
i=1 and rearranging, is equivalent to yi ≤

1−
∑

j>n yj

|CQ(a)|+n
. The latter

inequality is satisfied as yi ≤ θa,ci < Ti by definition, Ti < Tn by Claim 2, and Tn is

equal to the right-hand side.



PROCESSING RESERVES SIMULTANEOUSLY 39

((ξ∗a,ci)
|CM (a)|
i=1 is a solution to (LP 3)) Consider any vector (ξa,ci)

|CM (a)|
i=1 that satis-

fies constraints (i) and (ii); I show that
∑|CM (a)|

i=1 ξa,ci ≤
∑|CM (a)|

i=1 ξ∗a,ci . Constraint (i)

implies that, for every i ≤ n, |CQ(a)|ξa,ci ≤ 1 −
∑|CM (a)|

j=1 ξa,cj . Summing up over

all i ≤ n and rearranging yields
∑|CM (a)|

i=1 ξa,ci ≤ n
1−

∑
i>n ξa,ci

|CQ(a)|+n
+
∑

i>n ξa,ci , which

by constraint (ii) and the definition of (ξ∗a,ci)
|CM (a)|
i=1 implies that

∑|CM (a)|
i=1 ξa,ci ≤

n
1−

∑
i>n yi

|CQ(a)|+n
+
∑

i>n yi =
∑|CM (a)|

i=1 ξ∗a,ci .

((LP 3) does not have any other solution) Let (ξ♯a,ci)
|CM (a)|
i=1 be a solution to (LP 3),

I show that (ξ♯a,ci)
|CM (a)|
i=1 = (ξ∗a,ci)

|CM (a)|
i=1 . As (ξ♯a,ci)

|CM (a)|
i=1 is a solution to (LP 3),

|CM (a)|∑
i=1

ξ♯a,ci =

|CM (a)|∑
i=1

ξ∗a,ci = n
1−

∑
i>n yi

|CQ(a)|+ n
+
∑
i>n

yi.

Moreover, as (ξ♯a,ci)
|CM (a)|
i=1 satisfies constraint (i), for every i ≤ n, we have

|CQ(a)|ξ♯a,ci ≤ 1−
|CM (a)|∑
j=1

ξ♯a,cj = 1− n
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj.

Rearranging yields ξ♯a,ci ≤
1−

∑
j>n yj

|CQ(a)|+n
; therefore, ξ♯a,ci ≤ ξ∗a,ci for every i ≤ n. As ξ♯a,ci =

ξ∗a,ci for every i > n (by constraint (ii)) and
∑|CM (a)|

i=1 ξ♯a,ci =
∑|CM (a)|

i=1 ξ∗a,ci (as both

vectors maximize the objective), we conclude that (ξ♯a,ci)
|CM (a)|
i=1 = (ξ∗a,ci)

|CM (a)|
i=1 . □

Claim 4. The unique solution to (LP 2) is (ξ∗a,ci)
|CM (a)|
i=1 such that ξ∗a,ci = Tn for every

i ≤ n and ξ∗a,ci = θa,ci for every i > n.

Proof. By Claim 3, (ξ∗a,ci)
|CM (a)|
i=1 satisfies constraint (i); otherwise the unique solution

to (LP 3) would not satisfy its constraints in the special case where yi = θa,ci for every

i > n. As Tn ≤ θa,ci for every i ≤ 1, (ξ∗a,ci)
|CM (a)|
i=1 satisfies constraint (ii) by definition.

Having shown that (ξ∗a,ci)
|CM (a)|
i=1 satisfies all constraints (which implies that (LP 2) has

a solution), I now show that it is the unique solution to (LP 2). Let (ξ♯a,ci)
|CM (a)|
i=1 be

a solution to (LP 2), I show that (ξ♯a,ci)
|CM (a)|
i=1 = (ξ∗a,ci)

|CM (a)|
i=1 . Fixing ξ♯a,ci ≤ θa,ci for

every i > n; Claim 3 implies that, for every i ≤ n, ξ♯a,ci =
1−

∑
j>n ξ♯a,cj

|CQ(a)|+n
, as otherwise

(ξ♯a,ci)
|CM (a)|
i=1 would not be a solution. Then,

|CM (a)|∑
i=1

ξ♯a,ci = n
1−

∑
i>n ξ

♯
a,ci

|CQ(a)|+ n
+
∑
i>n

ξ♯a,cj =
n+ |CQ(a)|

∑
i>n ξ

♯
a,ci

|CQ(a)|+ n
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so the objective is increasing in (ξ♯a,ci)i>n; therefore, the unique maximizer is obtained

by setting ξ♯a,ci = θa,ci for every i > n, which implies that ξ♯a,ci = Tn for every i ≤ n. □

Finally, I use Claim 4 to show that (LP 1) has a unique solution. For any a ∈ Ã

and any S−a, let Sa(S−a) be the maximized objective function of (LP 2). If S−a

increases, then by (2), so does θa,c for every c ∈ CM(a). Therefore, constraint (ii)

of (LP 2) is relaxed so Sa(S−a) is increasing in S−a. Suppose that (LP 1) has two

solutions giving two distinct sum vectors S∗ = (S∗
a)a∈Ã and S♯ = (S♯

a)a∈Ã. Then, for

every a ∈ Ã, S∗
a = Sa(S

∗
−a) and S♯

a = Sa(S
♯
−a). Consider the sum vector S = (Sa)a∈Ã

with Sa = max{S∗
a, S

♯
a} for every a ∈ Ã. As S∗ and S♯ are distinct and derive

from solutions of (LP 1), it must be that
∑

a∈Ã Sa >
∑

a∈Ã S∗
a =

∑
a∈Ã S♯

a; hence,

the allocation underpinning S must violate some constraint of (LP 1). Consequently,

there exists an agent a ∈ Ã such that Sa > Sa(S−a). By definition, S−a ≥ S∗
−a; hence,

as Sa(S−a) is increasing in S−a, it follows that Sa(S−a) ≥ Sa(S
∗
−a). As S∗

a = Sa(S
∗
a),

it can be concluded that Sa > S∗
a. Analogous reasoning yields Sa > S♯

a; hence Sa >

max{S∗
a, S

♯
a}, a contradiction. By the preceding argument, every solution to (LP 1)

yields the same sum vector, which I denote by S∗. By Claim 4, for every a ∈ Ã, there

is a unique vector (ξ∗a,c)c∈CM (a) such that
∑

c∈CM (a) ξ
∗
a,c = S∗

a = Sa(S
∗
−a). Therefore,

the vector (ξ∗a,c)a∈Ã,c∈CM (a) = (ξ∗a(c),c)c∈C̃ is the unique solution to (LP 1). □

Fix an agent a, a category c, and a Round i ≥ 1 of the SRLP algorithm.

Lemma C.2. xi is a preallocation and dia ∈ [1/|C|, 1].

Proof. If the SRLP algorithm uses linear programming in Round i, then dia ∈ [1/|C|, 1]
by construction. The statement then follows from Lemma A.2. □

Define ξi = (ξia,c)a∈A,c∈C with ξia,c = min{xi
a,c, d

i
a} to be the allocation found in

Round i of the SRLP algorithm.

Lemma C.3. (i) ξi is an allocation and ξia = min{xi
a, 1}

(ii) dia = 1 if ξia < 1 and dia = maxc∈C{xi
a,c} if ξia = 1

(iii) ξia = 1 if and only if there exists a category c such that ξia,c = dia.

Proof. Analogous to Lemmas A.3, A.5 and A.6. □

Lemma C.4. ξia ≥ ξi−1
a and dia ≤ da(x

i) ≤ di−1
a .
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Proof. By definition, ξ1a ≥ ξ0 = 0 and da(x
1) ≤ d0a = 0. Moreover, at x0 every

agent is unqualified for every category while at x1 at least one agent is marginal

for a category since q ≥ 1 units are allocated. (This does not hold if no agent is

eligible for any category, but in that case the result is trivial as the SRLP algo-

rithm ends in Round 1 and outputs x1 = 0.) Therefore, the SRLP algorithm does

not use linear programming in Round 1 and dia = da(x
i) so the statement holds

in Round 1. I proceed by induction, assuming that the statement holds for every

j < i (induction hypothesis) and showing that ξia ≥ ξi−1
a and dia ≤ da(x

i) ≤ di−1
a .

Analogous reasoning to Lemma A.4 implies that da(x
i) ≤ di−1

a . If either the SRLP

algorithm does not use linear programming in Round i or it does but a /∈ Ãxi
, then

dia = da(x
i) ≤ di−1

a . It remains to consider the case in which the SRLP algorithm uses

linear programming in Round i and a ∈ Ãxi
. Define the allocation ξ̃i = (ξ̃ib,c)b∈A,c∈C

such that ξ̃ib,c = min{xi
b,c, db(x

i)}; that is, ξ̃i is defined analogously to ξi but uses

the demand vector d(xi) rather than di. Observe that the vector (ξ̃i
axi (c),c

)c∈C̃xi sat-

isfies the constraints of (LP 1); therefore, the vector (ξia,c)c∈Cxi
M (a)

satisfies the con-

straints of (LP 2) (see the proof of Lemma C.1). Let (ξ∗
axi (c),c

)c∈C̃ be the solution to

(LP 1); then the vector (ξ∗a,c)c∈Cxi
M (a)

is the solution to (LP 2) (see again the proof of

Lemma C.1). It follows that
∑

c∈Cxi
M (a)

ξ̃ia,c ≤
∑

c∈Cxi
M (a)

ξ∗a,c. For every c ∈ Cxi

M , by

definition xi
a,c < da(x

i) so ξ̃ia,c = xi
a,c; hence

∑
c∈Cxi

M (a)
xi
a,c ≤

∑
c∈Cxi

M (a)
ξ∗a,c. Again by

definition,
∑

c∈C min{da(xi), xi
a,c} = 1 and |Cxi

Q (a)|dia = 1−
∑

c∈Cxi
M (a)

ξ∗a,c. Combining

these two results yields |Cxi

Q (a)|da(xi)+
∑

c∈Cxi
M (a)

xi
a,c = |Cxi

Q (a)|dia+
∑

c∈Cxi
M (a)

ξ∗a,c = 1.

As
∑

c∈Cxi
M (a)

xi
a,c ≤

∑
c∈Cxi

M (a)
ξ∗a,c, it follows that da(x

i) ≥ dia. Having established that

dia ≤ da(x
i) ≤ di−1

a , ξia ≥ ξi−1
a follows from analogous reasoning to Lemma A.4. □

Lemma C.5. (i) If either xi
a,c < di−1

a or ξia,c < dia, then xi
a′,c = 0 for every a′ ∈ Ǎa,c.

(ii) If a is eligible for c and xi
a,c < di−1

a , then xi
a,c +

∑
a′∈Âa,c

xi
a′,c = qc.

Proof. Analogous to Lemmas A.7 and A.9. □

Lemma C.6. xi satisfies Axioms 1-4.

Proof. Analogous to Lemma A.10. □

Lemma C.7. (i) If xi
a,c < dia, then, for every Round j ≤ i, xj

a,c ≤ xi
a,c < dja.

(ii) If xi
a,c ≥ dia, then, for every j > i, xj

a,c = dj−1
a ≥ dja.
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Proof. Analogous to Lemmas A.12 and A.13. □

Lemma C.8. If the SRLP algorithm uses linear programming in Round i, then either

xi+1
a ≤ 1 or a’s status for a category changes between xi and xi+1.

Proof. Case 1 : Cxi

Q (a) ̸= ∅ and Cxi

M(a) = ∅. By construction, dia = 1/|Cxi

Q (a)|
so
∑

c∈Cxi
Q (a)

xi+1
a,c ≤ |Cxi

Q (a)|dia = 1. Therefore, xi+1
a > 0 implies that there exists

c ∈ Cxi

U (a) such that xi+1
a,c > 0, hence a’s status for c changes between xi and xi+1.

Case 2 : Cxi

Q (a) ̸= ∅ and Cxi

M(a) ̸= ∅. By assumption, a is an agent of interest.

The solution to (LP 1) ξ∗ is such that, for each element, at least one of the two con-

straints holds, otherwise that element (hence the sum) can be increased. Therefore,

for every c ∈ Cxi

M(a), ξ∗a,c = min{dia, q̃x
i

c −
∑

a′∈Ãxi
Q (c)

dia′}. By the definition of q̃x
i

c

and Lemma A.14(iii), we have ξ∗a,c = min{dia, qx
i

c −
∑

a′∈Âa,c
dia′} and, as c ∈ Cxi

M(a),

qx
i

c −
∑

a′∈Âa,c
dia′ > 0 so xi+1

a,c = ξ∗a,c. For every c ∈ Cxi

Q (a), xi
a,c ≥ da(x

i) by definition

so xi
a,c ≥ dia by Lemma C.4 and xi+1

a,c = dia by Lemma C.7(ii). It follows that∑
c∈Cxi

Q (a)

xi+1
a,c +

∑
c∈Cxi

M (a)

xi+1
a,c = |Cxi

Q (a)|dia+
∑

c∈Cxi
M (a)

ξ∗a,c = 1−
∑

c∈Cxi
M (a)

ξ∗a,c+
∑

c∈Cxi
M (a)

ξ∗a,c = 1.

Then, xi+1
a > 1 implies that there exists c ∈ Cxi

U (a) such that xi+1
a,c > 0, hence a’s

status for c changes between xi and xi+1.

Case 3 : Cxi

Q (a) = ∅. By Lemma A.14(i), xi+1
a > 1 implies that Cxi+1

Q (a) ̸= ∅,

hence a’s status for some category changes between xi and xi+1. □

Proof of Theorem 4. In Round 1, at least one unit is allocated (since q ≥ 1) so either

an agent becomes qualified for a category or one agent becomes marginal for each

category; hence, at least two statuses change. Thereafter, by Claim 1, every second

round either a status changes or an allocation is found. By Lemma C.7, status changes

are irreversible, therefore there can be at most 2|A||C| of them throughout the SRLP

algorithm. It follows that an allocation is found by Round 4|A||C| − 1.

Let N < 4|A||C| be the number of rounds after which the SRLP algorithm termi-

nates. Then, the SRLP algorithm produces the allocation xN , which by Lemma C.6

satisfies Axioms 1-4. It remains to show that xN = ξSR. I construct an alternative ra-

tioning problem R = (A,C, (πc)c∈C , (qc)c∈C) that is identical to the original rationing

problem R except that every agent a who is unqualified for a category c at the SR
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allocation ξSR is not eligible for c in R (whether or not a is eligible for c in R). That

is, for every category c, πc is such that: (i) for any two agents a and a′, aπca
′ if

and only if aπca
′ and (ii) aπc∅ if and only if ξSRa,c > 0. In this alternative problem

R, I denote the SR allocation by ξ
SR

, the number of rounds after which the SRLP

algorithm terminates by N , and the output of the SRLP algorithm by xN . To prove

that ξSR = xN , I show successively that ξSR = ξ
SR

, ξ
SR

= xN , and xN = xN .

(ξSR = ξ
SR

) Consider any agent-category pair (a, c) such that ξSRa,c = 0. If xi
a,c > 0

in any Round i of the SR algorithm, then for every j > i, either xj
a,c < dja and

xj
a,c ≥ xi

a,c > 0 by Lemma A.12, or xj
a,c ≥ dja > 0 by Lemma A.2; hence ξSRa,c = 0, a

contradiction. It follows that xi
a,c = 0 for every i ≥ 1; therefore, making a not eligible

for c does not impact the SR algorithm and ξSR = ξ
SR

.

(ξ
SR

= xN) As xN is an allocation of R that satisfies Axioms 1-4, it is sufficient to

show that ξ
SR

is the unique allocation of R that satisfies Axioms 1-4. For notational

convenience, for every agent a, category c, and status S ∈ {Q,M,U}, I denote by

CS(a) = CξSR

S (a) = Cξ
SR

S (a) the set of categories for which a’s status at the SR

allocation is S (in both R and R since ξSR = ξ
SR

), by AS(c) = AξSR

S (c) = Aξ
SR

S (c)

the set of agents whose status for c at the SR allocation is S, and, if AM(c) ̸= ∅, by

a(c) = aξ
SR
(c) = aξ

SR

(c) the agent who is marginal for c at the SR allocation (a(c) is

unique by Lemma A.14(ii)). Fix an allocation ξ
∗
of R that satisfies Axioms 1-4 and

an agent-category pair (a, c). I consider three cases.

Case 1 : a ∈ AU(c). By definition, ξ
SR

a,c = ξSRa,c = 0 so a is not eligible for c in R and

ξ
∗
a,c = 0 as ξ

∗
satisfies Axiom 1.

Case 2 : a ∈ AQ(c). By definition, ξ
SR

a,c = d(ξ
SR

a,c ) and by Lemma A.14(iii),

ξ
SR

a′,c = da′(ξ
SR

) for every a′ ∈ Âa,c; hence, as ξ
SR

is an allocation, da(ξ
SR

) +∑
a′∈Âa,c

da′(ξ
SR

) ≤ qc. By Proposition 3, it follows that da(ξ
∗
)+
∑

a′∈Âa,c
da′(ξ

∗
) ≤ qc.

If ξ
∗
a,c < da(ξ

∗
), then Lemma A.15 implies that ξ

∗
a,c+

∑
a′∈Âa,c

ξ
∗
a′,c = qc so there exists

a′ ∈ Âa,c such that ξ
∗
a′,c > da′(ξ

∗
), a contradiction. We conclude that ξ

∗
a,c = da(ξ

∗
).

Case 3 : a ∈ AM(c). By Lemma A.15, ξ
∗
a,c+

∑
a′∈Âa,c

ξ∗a′,c = qc. By Lemma A.14(iii),

Âa,c = AQ(c) and by Case 2, ξ
∗
a′,c = da′(ξ

∗
) for every a′ ∈ AQ(c); therefore, ξ

∗
a,c +∑

a′∈AQ(c) da′(ξ
∗
) = qc. By Lemma A.14(i), ξ

∗
a = 1 for every a′ ∈ Âa,c so

∑
c′∈CQ(a′) ξ

∗
a′,c′+∑

c′∈CM (a′) ξ
∗
a′,c′ = 1, which by Case 2 is equivalent to |CQ(a

′)|da′(ξ
∗
)+
∑

c′∈CM (a′) ξ
∗
a′,c′ =

1. Combining the last two results yields ξ
∗
a,c +

∑
a′∈AQ(c)

1−
∑

c′∈CM (a′) ξ
∗
a′,c′

|CQ(a′)| = qc.
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Let CM = {c ∈ C : CM(c) ̸= ∅} be the set of categories that have a marginal agent.

Cases 1-3 jointly imply that, for any allocation ξ
∗
of R that satisfies Axioms 1-4,

ξ
∗
a(c),c +

∑
a′∈AQ(c)

1−
∑

c′∈CM (a′) ξ
∗
a′,c′

|CQ(a′)|
= qc for every c ∈ CM , and(3)

ξ
∗
a,c =


1−

∑
c′∈CM (a) ξ

∗
a,c′

|CQ(a)| if a ∈ AQ(c)

0 if a ∈ AU(c)
for every (a, c) with a /∈ AM(c).(4)

Note that (3) is a linear system of equations with |CM | variables and |CM | equations.
Once a vector (ξ

∗
a(c),c)c∈CM

satisfying (3) has been found, the corresponding allocation

is pinned down by (4). As ξ
SR

satisfies Axioms 1-4, (3) has a solution. If that solution

is unique, then ξ
SR

is the unique allocation of R that satisfies Axioms 1-4 and the

proof is complete. It remains to show that (3) does not have multiple solutions.

Suppose that (3) has multiple solutions. Then, (3) has strictly fewer than |CM |
linearly independent equations so there is at least one degree of freedom. Arbitrarily

fixing a category c ∈ CM , for any value of ξ
∗
a(c),c there exists a vector (ξ

∗
a(c′),c′)c′∈CM\{c}

such that (ξ
∗
a(c′),c′)c′∈CM

is a solution to (3). Given an arbitrarily small positive number

ϵ > 0, I construct an allocation ξ
ϵ
as follows. First, set ξ

ϵ

a(c),c = ξ
SR

a(c),c − ϵ. Second,

for every c′ ∈ CM \ {c}, set ξ
ϵ

a(c′),c′ be such that (ξ
ϵ

a(c′),c′)c′∈CM
is a solution to (3).

Third, for every (a, c) with a /∈ AM(c), set ξ
ϵ

a,c using (4). As all equations in (3) and

(4) are linear, there exists a value ϵ > 0 small enough so that 0 < ξ
ϵ

a(c′),c′ < da(c′)(ξ
ϵ
)

for every c′ ∈ CM . Fixing such an ϵ, I next show that ξ
ϵ
satisfies Axioms 1-4.

(Axiom 1) By definition, ξ
ϵ

a,c = 0 if a is not eligible for c in R.

(Axiom 2) If ξ
ϵ
is wasteful, then there exists an agent-category pair (a, c) such

that
∑

a′∈A ξ
ϵ

a′,c < qc, ξ
ϵ

a < 1, and a is eligible for c in R. If a ∈ AQ(c), then,

by (4), ξ
ϵ

a,c|CQ(a)| +
∑

c′∈CM (a) ξ
ϵ

a,c′ = 1. Moreover, (4) implies that ξ
ϵ

a,c = ξ
ϵ

a,c′ for

every c′ ∈ CQ(a) so we have that
∑

c′∈CQ(a) ξ
ϵ

a,c′ +
∑

c′∈CM (a) ξ
ϵ

a,c′ ; hence ξ
ϵ

a = 1, a

contradiction. If a ∈ AM(c), then (3) and (4) imply that ξ
ϵ

a,c +
∑

a′∈AQ(c) ξ
ϵ

a′,c = qc, a

contradiction. If a ∈ AU(c), then ξSRa,c = 0 so a is not eligible for c inR, a contradiction.

(Axiom 3) If ξ
ϵ
does not respect priorities, then there exist an agent-category pair

(a, c) and an agent a′ ∈ Ǎa,c such that ξ
ϵ

a < 1 and ξ
ϵ

a′,c > 0. If a ∈ AQ(c), then

analogous reasoning to Axiom 2 yields ξa = 1, a contradiction. If a /∈ AQ(c), then

a′ ∈ AU(c) so (4) implies that ξ
ϵ

a′,c = 0, a contradiction.
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(Axiom 4) If ξ
ϵ
is not category neutral, then there exists an agent-category pair

(a, c) such that a is eligible for c in R, ξ
ϵ

a,c < maxc′∈C{ξ
ϵ

a,c′}, and ξ
ϵ

a,c+
∑

a′∈Âa,c
ξ
ϵ

a′,c <

qc. By definition, maxc′∈C{ξ
ϵ

a,c′} ≤ da(ξ
ϵ
) so ξ

ϵ

a,c < da(ξ
ϵ
), which by (4) implies

that a /∈ AQ(c). Moreover, the assumption that a is eligible for c in R implies

that a /∈ AU(c) so it must be that a ∈ AM(c). In that case, however, we have

ξ
ϵ

a,c +
∑

a′∈AQ(c) ξ
ϵ

a′,c = qc by (3) and (4). By Lemma A.14(iii), AQ(c) = Âa,c so we

conclude that ξ
ϵ

a,c +
∑

a′∈Âa,c
ξ
ϵ

a′,c = qc, a contradiction.

By the preceding argument, R has an allocation ξ
ϵ
that satisfies Axioms 1-4. Recall

that, by construction, there is a category c ∈ CM such that ξ
ϵ

a(c),c = ξ
SR

a(c),c−ϵ (with ϵ >

0) and 0 < ξ
ϵ

a(c),c < da(c)(ξ
ϵ
). Lemma A.15 implies that ξ

ϵ

a(c),c +
∑

a′∈Âa(c),c
ξ
ϵ

a′,c = qc.

Then, for every a′ ∈ Âa(c),c, ξ
ϵ

a′,c+
∑

b∈Âa′,c
ξ
ϵ

b,c < qc so Lemma A.15 implies that ξ
ϵ

a′,c =

da′(ξ
ϵ
). It follows that ξ

ϵ

a(c),c +
∑

a′∈Âa(c),c
da′(ξ

ϵ
) = qc. As ξ

SR
satisfies Axioms 1-4,

analogous reasoning yields ξ
SR

a(c),c +
∑

a′∈Âa(c),c
da′(ξ

SR
) = qc. As ξ

ϵ

a(c),c < ξ
SR

a(c),c, there

exists a′ ∈ Âa(c),c with da′(ξ
ϵ
) > da′(ξ

SR
), which contradicts Proposition 3.

(xN = xN) Suppose that, for some i = 1, . . . ,min{N,N}, xi−1 = xi−1 and di−1 =

d
i−1

(induction hypothesis). I show that xi = xi and di = d
i
. Fixing any agent-

category pair (a, c), I show that xi
a,c = xi

a,c. If a is not eligible for c in R, then by

definition xi
a,c = xi

a,c = 0. If ξSRa,c > 0, then a is eligible for c in both R and R so xi
a,c =

min{di−1
a ,max{qc−

∑
a′∈Âa,c

di−1
a′ , 0}} and xi

a,c = min{di−1

a ,max{qc−
∑

a′∈Âa,c
d
i−1

a′ , 0}};
hence, implies that xi

a,c = xi
a,c by the induction hypothesis. It remains to consider the

case in which a is eligible for c in R and ξSRa,c = 0. As ξSRa,c = 0, a is not eligible for c in

R so xi
a,c = 0. By Lemma A.15, ξSRa,c = 0 implies that

∑
a′∈Âa,c

ξSRa′,c = qc; therefore, as

ξSR = ξ
SR

= xN , we have
∑

a′∈Âa,c
xN
a′,c = qc. For every a

′ ∈ Âa,c, x
N
a′,c ≤ da′(x

N) as xN

is an allocation and da′(x
N) ≤ d

i−1

a′ by Lemma C.4. It follows that
∑

a′∈Âa,c
d
i−1

a′ ≥ qc,

which by the induction hypothesis implies that
∑

a′∈Âa,c
di−1
a′ ≥ qc; hence xi

a,c = 0.

As xi−1 = xi−1 and xi = xi, the SRLP algorithm uses linear programming in

Round i when run over R if and only if it does so when run over R. In either

case, the zero elements of the round preallocation do not impact the construction of

the demand vector; hence di = d
i
. As the induction hypothesis holds in Round 1,

it follows by induction that xi = xi for every i = 1, . . . ,min{N,N} so the SRLP

algorithm over R ends in Round N = N and produces xN = xN . □


