Matching Theory and Practice

David Delacrétaz

The University of Melbourne and The Centre for Market Design

Department of Treasury and Finance Public policy Seminar 23 June 2016

Overview

- 1. Introduction
- 2. Matching Theory
 - Marriage Market
 - Stability
 - Deferred-Acceptance
- 3. Applications
 - School Choice
 - Kindergarten in Victoria
- 4. My Research
 - Matching with Quantity
 - Refugee Dispersal
- 5. Conclusion

Matching Markets

- Money is extremely useful to facilitate transactions
 - Price equilibrates supply and demand
 - Markets organise themselves well
 - Adam Smith's invisible hand
- In matching markets, money cannot be used
 - There may be a price but it does not equilibrate supply and demand
 - These markets do not perform well if left to themselves (market failure)
 - Economists can redesign these markets to make them work better
- Examples
 - School or university admission
 - Kidney donations
 - Allocations of tasks within an organisation
 - Refugee resttlement

A Brief History of Matching

- Gale and Shapley (1962)
 - Brilliant and easy to read paper
 - Theoretical exercise about an abstract marriage market
- Real world applications
 - Started in early 2000's
 - Very active field since then
- 2012 Nobel Prize in Economics
 - Lloyd Shapley and Al Roth
 - "Who Gets What and Why?"

Marriage Market (GS 1962)

- Set of women $\{w_1, w_2, ..., w_n\}$ and set of men $\{m_1, m_2, ..., m_n\}$
 - Each woman can be matched (married) to at most one man
 - Each man can be matched (married) to at most one woman
- People care who they marry
 - Women have (ordinal) preferences over men and remaining single
 - Men have (ordinal) preferences over women and remaining single
- How do we best match these men and women?
 - A key concept is stability
 - It ensures people do not want to rematch
 - Essential to the success of two-sided matching markets

Stability

Definition (Individual Rationality, GS 62)

A matching is **individually rational** if there does not exist any woman or man who would prefer to remain single than to be matched with his/her current partner.

Definition (Stability, GS 62)

A matching is **stable** if it is individually rational there does not exist any woman and any man who would both prefer to be matched with each other than with their current partners.

• Consider the following matching:

 $(w_1, m_1), (w_2, m_2)$

• Individual rationality requires

- w_1 prefers to be with m_1 than single
- m_1 prefers to be with w_1 than single
- w_2 prefers to be with m_2 than single
- m_2 prefers to be with w_2 than single

• Stability requires

- Individual rationality
- EITHER w_1 prefers m_1 to m_2 OR m_2 prefers w_2 to w_1
- EITHER w_2 prefers m_2 to m_1 OR m_1 prefers w_1 to w_2

Deferred-Acceptance Algorithm

- Each man proposes to the woman he prefers (if any)
 - Each woman tentatively accepts her favourite proposal (if any)
 - She rejects all other proposals
- Each man makes a new proposal
 - If he was accepted he proposes to the same woman again
 - If he was rejected he proposes to his next favourite woman (if any)
- The algorithm terminates when all proposals are accepted
 - Each man is matched with the woman to whom he last proposed
 - Each man who did not make a proposal remains single
 - Each woman who did not accept any proposal remains single
- The algorithm is simple and easy to use in practice
 - It can be coded in an Excel spreadsheet (Visual Basics)

6 / 29

Round 1

- $\mathsf{Eric} \quad \to \quad \mathsf{Ashley}$
- $\mathsf{Frank} \quad \rightarrow \quad \mathsf{Ashley}$
- $\mathsf{George} \ \rightarrow \ \mathsf{Barbara}$
- Henry \rightarrow Chelsea

In the first round, each man proposes to his favourite woman.

Round 1

- Eric \rightarrow Ashley \checkmark
- Frank \rightarrow Ashley **X**
- $\mathsf{George} \ \rightarrow \ \mathsf{Barbara}$
- ${\sf Henry} \quad \to \quad {\sf Chelsea}$

Ashley chooses Eric over Frank.

Round 1

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- Frank \rightarrow Ashley **X**
- ${\sf George} \ \rightarrow \ {\sf Barbara} \ {\it \textbf{X}}$
- ${\sf Henry} \quad \to \quad {\sf Chelsea}$

Barbara rejects Goerge's proposal.

Round 1

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- Frank \rightarrow Ashley **X**
- George \rightarrow Barbara **X**
- Henry \rightarrow Chelsea \checkmark

Chelsea tentatively accepts Harry's proposal.

Round 1

- $\mathsf{Eric} \to \mathsf{Ashley} \checkmark$
- Frank \rightarrow Ashley **X**
- George \rightarrow Barbara **X**
- Henry \rightarrow Chelsea \checkmark

7 / 29

Round 1

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- Frank \rightarrow Ashley **X**
- George \rightarrow Barbara **X**
- Henry \rightarrow Chelsea \checkmark

In Round 2, Frank and George will propose to Chelsea.

Round 2

- $\mathsf{Eric} \quad \to \quad \mathsf{Ashley}$
- $\mathsf{Frank} \quad \to \quad \mathsf{Chelsea}$
- $\mathsf{George} \ \to \ \mathsf{Chelsea}$
- ${\sf Henry} \quad \to \quad {\sf Chelsea}$

Round 2

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- $\mathsf{Frank} \quad \to \quad \mathsf{Chelsea}$
- $\mathsf{George} \ \rightarrow \ \mathsf{Chelsea}$
- ${\sf Henry} \quad \to \quad {\sf Chelsea}$

Ashley again tentatively accepts Eric's proposal.

David Delacrétaz

Round 2

- $\mathsf{Eric} \quad \to \quad \mathsf{Ashley} \quad \checkmark$
- $\mathsf{Frank} \quad \rightarrow \quad \mathsf{Chelsea} \quad \checkmark$
- George \rightarrow Chelsea **X**
- Henry \rightarrow Chelsea **X**

Chelsea chooses Frank over George and Henry.

Round 2

- Eric \rightarrow Ashley \checkmark
- Frank \rightarrow Chelsea \checkmark
- George \rightarrow Chelsea **X**
- Henry \rightarrow Chelsea **X**

7 / 29

Round 2

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- Frank \rightarrow Chelsea \checkmark
- George \rightarrow Chelsea **X**
- Henry \rightarrow Chelsea **X**

In Round 3, George and Henry will propose to Dory.

Round 3

- $\mathsf{Eric} \quad \to \quad \mathsf{Ashley}$
- $\mathsf{Frank} \quad \to \quad \mathsf{Chelsea}$
- $\mathsf{George} \ \to \ \mathsf{Dory}$
- ${\sf Henry} \quad \to \quad {\sf Dory}$

7 / 29

Round 3

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- $\mathsf{Frank} \quad \to \quad \mathsf{Chelsea}$
- $\mathsf{George} \ \rightarrow \ \mathsf{Dory}$
- ${\sf Henry} \quad \to \quad {\sf Dory}$

Ashley tentatively accept Eric's proposal.

Round 3

- $\mathsf{Eric} \quad \to \quad \mathsf{Ashley} \quad \checkmark$
- $\mathsf{Frank} \quad \rightarrow \quad \mathsf{Chelsea} \quad \checkmark$
- $\mathsf{George} \ \to \ \mathsf{Dory}$
- ${\sf Henry} \quad \to \quad {\sf Dory}$

Chelsea tentatively accept Frank's proposal.

David Delacrétaz

Round 3

Eric	\rightarrow	Ashley	1
Frank	\rightarrow	Chelsea	1
George	\rightarrow	Dory	1

Henry \rightarrow Dory **X**

Dory chooses George over Henry.

Round 3

Eric	\rightarrow	Ashley	1

- Frank \rightarrow Chelsea \checkmark
- George \rightarrow Dory \checkmark
- Henry \rightarrow Dory **X**

7 / 29

Round 3

Eric	\rightarrow	Ashley	1
Frank	\rightarrow	Chelsea	1
George	\rightarrow	Dory	1

Henry \rightarrow Dory X

In Round 4, Henry will propose to Ashley.

Round 4

- $\mathsf{Eric} \quad \to \quad \mathsf{Ashley}$
- $\mathsf{Frank} \quad \to \quad \mathsf{Chelsea}$
- $\mathsf{George} \quad \to \quad \mathsf{Dory}$
- ${\sf Henry} \quad \to \quad {\sf Ashley}$

7 / 29

Round 4

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- $\mathsf{Frank} \quad \rightarrow \quad \mathsf{Chelsea}$
- $\mathsf{George} \ \rightarrow \ \mathsf{Dory}$
- Henry \rightarrow Ashley **X**

Ashley chooses Eric over Henry.

Round 4

Eric	\rightarrow	Ashley	1
Frank	\rightarrow	Chelsea	1
George	\rightarrow	Dory	1
Henry	\rightarrow	Ashley	X

Chelsea and Dory tentatively accept their respective proposals.

Round 4

- $\mathsf{Eric} \quad \rightarrow \quad \mathsf{Ashley} \quad \checkmark$
- Frank \rightarrow Chelsea \checkmark
- $\mathsf{George} \ \rightarrow \ \mathsf{Dory} \quad \checkmark$
- Henry \rightarrow Ashley **X**

7 / 29

Round 4

Eric	\rightarrow	Ashley	1
Frank	\rightarrow	Chelsea	1
George	\rightarrow	Dory	1
Henry	\rightarrow	Ashley	X

Henry has run out of options and will not make any proposal in Round 5.

Round 5

- $\mathsf{Eric} \quad \to \quad \mathsf{Ashley}$
- $\mathsf{Frank} \quad \to \quad \mathsf{Chelsea}$
- $\mathsf{George} \quad \to \quad \mathsf{Dory}$
- $\mathsf{Henry} \quad \to \quad \emptyset$

7 / 29

Round 5

Eric	\rightarrow	Ashley	\checkmark
Frank	\rightarrow	Chelsea	\checkmark
George	\rightarrow	Dory	\checkmark
Henry	\rightarrow	Ø	1

All proposals are accepted and the algorithm terminates.

<u>Outcome</u>

Eric is matched with Ashley Frank is matched with Chelsea George is matched with Dory Henry and Barbara remain unmatched

Ashley:	G, E, H, F, \emptyset	Eric:	\mathcal{A}, \emptyset
Barbara:	E, H, \emptyset	Frank:	A, C, B, D, \emptyset
Chelsea:	F, H, G, \emptyset	George:	B, C, D, A, \emptyset
Dory:	F, G, H, E, \emptyset	Henry:	C, D, A, \emptyset

Summary

Round 1	Round 2	Round 3	Round 4	Round 5
$E \rightarrow A \checkmark$				
$F \rightarrow A X$	$F \rightarrow C \checkmark$			
G ightarrow B X	$G \rightarrow C X$	$G \rightarrow D \checkmark$	$G \rightarrow D \checkmark$	$G \rightarrow D \checkmark$
$H \rightarrow C \checkmark$	$H \rightarrow C X$	$H \rightarrow D X$	$H \rightarrow A X$	$H o \emptyset \checkmark$

Properties of DA

Theorem

The matching produced by the man-proposing deferred-acceptance algorithm is the man-optimal stable matching.

Man-optimal stable matching

- In any other stable matching, all men are either matched with the same woman or with one they like less
- Best stable matching from the men's point of view
- Worst stable matching from the women's point of view

Properties of DA

Theorem

The matching produced by the woman-proposing deferred-acceptance algorithm is the woman-optimal stable matching.

Woman-optimal stable matching

- In any other stable matching, all women are either matched with the same man or with one they like less
- Best stable matching from the women's point of view
- Worst stable matching from the men's point of view

Set of Stable Matchings

• On one extreme, men-optimal stable matching.

- Found by the men-proposing DA
- Best stable matching for men, worst for women
- On the other extreme, woman-optimal stable matching
 - Found by the women-proposing DA
 - Best stable matching for women, worst for men
- The set of stable matching is always nonempty
 - ▶ If both versions of DA give the same matching: unique stable matching
 - Otherwise DA gives the two extremes
 - There may be more stable matchings in between

Incentive Properties

Theorem (GS 62)

The deferred acceptance is **strategy-proof** for the **proposing** side but not for the proposed side.

- In the men-proposing deferred-acceptance algorithm:
 - Men can only lose out if they misrepresent their preferences
 - Women can potentially gain by misrepresenting their preferences
- Finding the right strategy is difficult and risky
 - More likely to lose than gain
 - Generally not regarded as a big problem

Overview

- 1. Introduction
- 2. Matching Theory
 - Marriage Market
 - Stability
 - Deferred-Acceptance
- 3. Applications
 - School Choice
 - Kindergarten in Victoria
- 4. My Research
 - Matching with Quantity
 - Refugee Dispersal
- 5. Conclusion

From Theory To Practice

- Gale and Shapley (1962) proposed a theoretical model
 - ► To the best of my knowledge no marriage is arranged in this way
 - Mathematics and romance do not always get along...
 - The literature remained essentially theoretical until the early 2000's
- Since then many applications
 - School Choice
 - Kidney Exchange
 - National Resident Matching Program
- This presentation focuses on school choice
 - It constitutes the starting point of the applied matching literature
 - The problem is similar to the marriage market
 - It is relevant to Victoria

School Choice

- Abdulkadiroglu and Sonmez (2003)
 - Excellent paper, easy to read
 - High school students assigned to schools in Boston
 - It has been extended to many US cities
 - It could be applied to Melbourne
- Assigning students to their neighbourhood causes problems
 - Wealthy parents move to areas with good schools
 - United States cities are very segregated
- Allowing students to choose has three advantages
 - It is welfare enhancing
 - It reduces the importance of family wealth
 - It mixes populations

The Problem

- School Choice existed but was not done optimally
 - Ineffective "Boston" algorithm
 - Incentive problem and unfair matching
- The authors proposed a new design
 - Based on Gale and Shapley (1962)
 - Uses the deferred acceptance algorithm
- The new design was implemented
 - Economists have been designing matching markets ever since

The Model

- Very close to the marriage market
 - Set of students and set of schools
 - Students have ordinal preferences over schools
 - Schools have ordinal priorities over students
- Many-to-one matching
 - Each school is matched with many students
 - Each school has a capacity limit (number of students it can fit)
 - ► This hardly makes a difference, GS 62 considered it as an extension
- The market is one-sided
 - Schools are not strategic agents, school seats are goods
 - Only students' welfare matters
 - Schools priorities (not preferences) are determined by law
 - This is important

School Choice

One-Sided Market

- Priorities determined by law
 - Higher priority if the school is in the same neighbourhood
 - Higher priority if the sibbling is attending the school
 - Lottery
- Stability means fairness
 - Schools are not strategic agent, they will not rematch
 - A stable matching is fair: if a student misses out on a school (s)he likes, then all students attending that school have a higher priority
- Student proposing DA has desirable properties
 - It is strategy-proof
 - It is stable (fair)
 - It maximises welfare given the stability (fairness) constraint

Policy Implications

- In the United States
 - "Boston" algorithm was replaced by deferred acceptance
 - Similar designs were implemented in other cities
- Can we learn from this in Victoria?
 - Kindergarten
 - Schools?
 - Child Care?

Kindergarten in Victoria

- What is kindergarten?
 - Often called Preschool
 - One year program, two years before Grade 1
 - Attendance is optional and places are not guaranteed
 - Funded by the state, often owned and operated by councils
 - Sometimes privately owned but strictly regulated
- A matching market
 - Children (or their parents) have preferences over kindergarten
 - Priorities for each kindergarten are determined by law
 - Each kindergarten has a capacity limit
 - The problem is almost identical to school choice

Using Matching Theory

Typical process

- Centralised at the council level
- Four rounds of offers over two months
- Outcome is similar to the "Boston" algorithm...
- But it takes two months instead of thirty seconds
- It could be replaced by the deferred acceptance algorithm
 - Large amount of time and paperwork saved
 - Better allocation
 - Strategy-proof for families
 - Better information on demand for kindergarten

19 / 29

Obstacles

- People like to be in control
 - They are rightfully weary of mysterious algorithms
 - Explaining how it works goes a long way
- Councils may feel power is taken away from them
 - They retain control over priorities
 - They continue to manage kindergartens
 - Only the headaches associated with the matching are taken away
- People do not like change
 - Start with a pilot in one or two councils

Overview

- 1. Introduction
- 2. Matching Theory
 - Marriage Market
 - Stability
 - Deferred-Acceptance
- 3. Applications
 - School Choice
 - Kindergarten in Victoria
- 4. My Research
 - Matching with Quantity
 - Refugee Dispersal
- 5. Conclusion

Childcare Matching

- A matching market
 - Families have preferences over childcare centres
 - Priorities are determined by law (centres can to some extent have a say)
 - Each centre has a capacity limit
- Two main differences with kindergarten
 - Children can enter or leave at any point
 - Children can attend part-time
- Dynamic issue
 - Trade-off in terms of how often the market is cleared
 - Thicker market vs waiting time
- Part-time issue
 - Enormous consequences on the model
 - This is what I study in my paper

Matching with Quantity

- Simple model
 - Focuses on the heart of the problem
 - Any application, including childcare is inevitably more complex
 - The main insights developed are still valid
- Some agents want two units of the same good
 - These agents are not interested in getting just one unit
 - Children who need to attend childcare full-time
- Some agents only want one unit
 - Children who need to attend part-time
- Complementarity in preferences
 - An agent who wants two units sees them as complements
 - A unit is worth more to the agent if (s)he already has one
 - This is the heart of the problem

Consequences of Complementarity

- The set of stable matching is not well behaved
 - It may be empty
 - It may not contain an agent-optimal stable matching
 - Instead there may be several undominated ones
- The deferred acceptance algorithm does not work
 - Even if an agent-optimal stable matching exists it may not find it
- What is going on?
 - The set of stable matching is part of a larger set
 - That set is well behaved
- Relax the definition of stability
 - Allow for some degree infeasibility and instability
 - "Pseudo-stable" matchings
 - Seach that well-behaved set for stable matchings

Finding Stable Matchings

- The algorithm works in two stages
 - (i) Adapt the deferred acceptance algorithm to find the agent-optimal pseudo-stable matching
 - (ii) Search the set to find stable matchings
- All stable matchings can be found in this way
 - This can be computationally heavy
 - Finding an undominated stable matching may be enough
- Applications
 - Childcare matching
 - University exchange programs
 - Matching with couples
 - Refugee dispersal

Refugee Dispersal

- Joint project
 - Scott Kominers (Harvard)
 - Alex Teytelboym (Oxford)
- The United Kingdom will resettle 20,000 Syrian refugees by 2020
 - These will be spread across the country in several localities
- We study this matching market
 - Refugees have preferences over localities
 - Localities can set up priorities
 - Localities have capacity limits

Refugee Dispersal

Refugees are more likely to successfully integrate if

- They are relocated in a place they like
- They have the services they need
- They have a chance to find work
- They are a good fit for the community
- Technical Difficulty
 - Families have different sizes
 - Families require different services (schools, hospitals, etc)
- Complex version of the quantity problem
 - A similar algorithm can be found to find a stable matching

International Refugee Cirisis

- Refugees currently have three options
 - Apply to one country at a time
 - Wait around in a camp to be processed by the UN
 - Reach Europe (or Australia) and claim asylum
- This could be organised as a matching market
 - Refugees have preferences over countries
 - Countries have preferences over refugees and set quotas
 - Quantity problem does not matter on such a large scale
- This is a standard two-sided matching market
 - Deferred acceptance works well
 - The hard part is to convince countries to offer resettlement places
 - The quotas must be high enough for refugees to enter the system rather than seek asylum

Conclusion

- Matching theory has many applications
 - School choice, kidney exchange, labour market, university admission, doctor-hospital matching, cadet matching, refugee dispersal, etc
 - Organising these markets efficiently can make a real difference
- Research continues
 - More complex matching models and algorithms are being developed
 - Potential for more applications
- The current theory already has great potential
 - It is underutilised and many markets could be improved
- Academics have little incentive to tackle these problems
 - This is the purpose of the Center for Market Design
 - Public servants have a very important role to play

References

Abdulkadiroglu, A. and Sönmez, T. 2003, 'School Choice: A Mechanism Design Approach.' *American Economic Review*, 93(3), pp. 729-47

Gale, D. and Shapley, L.S. 1962, 'College Admissions and the Stability of Marriage.' *The American Mathematical Monthly*, 69(1), pp. 9-15

Municipality Association of Victoria, Jan 2013. "A Framework and Resource Guide for Managing a Central Registrations Process for Kindergarten Places"

References

Teytelboym, A. and W. Jones, "The Refugee Match" (2016)

Teytelboym, A. and W. Jones, "The Local Refugee Match" (2016)

Teytelboym, A. and W. Jones, "Choices, preferences and priorities in a matching system for refugees" (2016), Forced Migration Review, 51, pp. 80-82