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Abstract

Matching markets such as day care, tuition exchange, couples problems and refugee
resettlement involve agents of different sizes. The size of an agent is the amount of
capacity that he uses. In matching markets where all agents have the same size, there
exists an agent-optimal stable matching. This structure disappears when agents have
different sizes: the set of stable matchings may not contain an agent-optimal element
and may even be empty. In this paper, we study a matching market where the size
of an agent is either one or two. We propose a novel and constructive algorithm to
find an agent-undominated stable matching whenever one exists. We introduce a novel
relaxation of stability: size-stability. Size-stable matchings are non-wasteful but allow
size-two agents to envy multiple size-one agents. We show that the set of size-stable
matchings is nonempty. We adapt our algorithm to find a size-stable matching that
is undominated from the point of view of size-two agents, thus compensating them for
envying size-one agents. In the process, we outline a new trade-off between eliminating
waste and bounding envy: at any non-wasteful matching, an agent may envy arbitrarily
many other agents.
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1 Introduction
Centralized matching programs have been successfully implemented in various markets, in-
cluding the National Resident Matching Program (Roth, 2003), school choice (Abdulka-
diroglu and Sönmez, 2003) and kidney exchange (Roth, Sönmez, and Ünver, 2004). These
involve a central clearing house that collects information on both sides of the market and
uses an algorithm to match doctors to hospitals, students to schools, and patients to kidneys.

The matching of children to day care centers, in contrast, has remained decentralized
around the world. Parents have to apply individually to multiple centers in the hope of
getting a place and may have to decide whether or not to accept an offer before knowing
whether or not a better one will become available. Che and Koh (2016) show that the
outcome of such a decentralized matching market may be unfair and inefficient, even in the
presence of waiting lists. Day care is an essential service for parents who wish to reconcile
career and family, but places are often in short supply. Inefficiencies in the way these places
are allocated can therefore have important consequences. In addition, these inefficiencies
can often not be fully addressed by a price mechanism, as fees are regulated and access is
prioritized by law.1

An important difference between the matching of children to day care centers and students
to schools is that children often attend day care part-time while students always attend school
full-time. A place at a day care center can therefore be shared among two or more children
attending on different days. Mathematically, children have different sizes in the sense that
they affect the capacity constraint of a day care center differently depending on whether they
attend part-time or full-time. This seemingly small difference considerably complicates the
search for a “good” matching rule, which may offer an explanation as to why the matching
of children to day care centers has remained decentralized.2

Matching markets where agents have different sizes arise in a variety of contexts. Tu-
ition exchange agreements between universities, for example those created by the Erasmus
program, often contain this feature. These bilateral agreements allow students from one uni-
versity to study at the other for a year or a semester. The home university is responsible for

1For example, families from a disadvantaged background or families who live in the neighborhood where
the day care center is located often have a higher priority.

2Another potential difficulty with day care matching is that children may enter or exit at any time, giving
the problem a dynamic aspect. The largest intake, however, takes place once a year when the older children
start school or kindergarten. Optimizing this static problem has the potential to greatly improve the way
the market operates.

1



selecting which students it will send to its partner. Places are often competitive and students
may apply for several destinations, in order of preference. The selection process is a matching
market: students have preferences over partner universities and have different priorities for
each of them depending on the quality of their application. Capacities are determined by the
exchange agreement, which can specify either a maximum number of students that can be
selected or a maximum number of semesters that can be used. In the latter case, a student
going for a year uses two units of capacity. Exchange has become an increasingly important
part of university degrees and, in a globalized world, demand for it is likely to keep growing
in the future. Designing mechanisms for universities to efficiently cope with this demand and
match students and partner institutions in the best possible way requires to study models
where agents have different sizes.

Agents with different sizes also present challenges in existing models. The National Res-
ident Matching Program (NRMP) has matched medical graduates to residency hospitals in
the United States since 1951. Since 1983, doctors have had the option to apply as couples
and submit preferences over pairs of hospitals (Roth, 1984). A couple requires two positions,
however they may not be at the same hospital. Refugee resettlement (Delacrétaz, Kominers,
and Teytelboym, 2016) constitutes another extension. People accepted as refugees in a given
country are generally resettled across various local areas that provide them with multiple ser-
vices (e.g. housing, school places or training programs). Multidimensional constraints arise
in this problem as families have different service requirements, depending for example on
whether they have children or specific needs.

In order to pin down the implications of introducing sizes and develop suitable solutions,
we study the simplest matching model with sizes. Agents (e.g. parents, students) have ordinal
preferences over objects (e.g. day care centers, host universities) that are available in multiple
identical units (e.g. part-time places in a specific day care center or semesters on exchange
at a specific partner university). For each object, agents are ranked according to exogenous
priorities. Agents can have a size of either one or two: there are single-unit agents who
require one unit of an object (e.g. families placing their child part-time or students going on
exchange for a semester) and double-unit agents who require two units of the same object
(e.g. families placing their child full-time or students going on exchange for a year).

The model – as well as the insights gathered and techniques developed throughout the
paper – can be extended in various ways to fit specific applications. Extensions can follow
at least three directions. First, constraints may take place over several dimensions. Children
going to day care part-time typically attend specific days, for example Monday-Wednesday-
Friday or Tuesday-Thursday. A day care center has two capacity constraints: one for each
part of the week. A part-time child uses one unit of capacity of either part and a full-time child
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uses a unit of capacity of both parts. Refugee resettlement also involves multidimensional
constraints, each of which is a service. Families may also require multiple units of some
services, for example a family with three school-age children requires three school places.
Second, the model can be extended to the case where agents have preferences over both an
object and a number of units. Students may prefer to go on exchange for a year but, if this
is not possible, be willing to go for only a semester. The length of time they choose may also
depend on the university they consider. Parents may likewise choose to settle for placing
their child into day care part-time even though they would prefer a full-time slot. Third,
agents may desire units of different objects. Doctors in a couple can for example work in
two different hospitals located in the same city. Sizes take different forms in each of these
applications, however they are present in all of them. Designing central clearing houses for
these markets requires an understanding of how sizes affect matching problems. This paper
sheds some light on the subject and constitutes a stepping stone towards developing new
solutions for a wide-range of matching applications.

Stability – initially introduced by Gale and Shapley (1962) – is a central concept in
matching theory. In our model, an agent and an object form a blocking pair of a given
matching if the agent prefers the object to his own and at least the number of units he
requires are either unassigned or assigned to agents with a lower priority. A matching is
stable if it does not have any blocking pair. Stable matchings are desirable for a range
of reasons that vary depending on the application. First, stability constitutes a natural
equilibrium criterion. In the NRMP, a doctor and a hospital that form a blocking pair
have an incentive to match with one another outside of the matching program, thus an
unstable matching is not at equilibrium. Second, empirical evidence suggests that stable
matchings prevent unraveling, that is clearing houses that implement stable matchings tend
to achieve high participation rates (Roth, 1991). Third, stability constitutes an essential
fairness criterion in some applications. This is the case in school choice, where stability
ensures that a student may only miss out on a school he wants if all the students matched
to that school have a higher priority.3 Fairness is the main reason why stability is desirable
in day care matching and tuition exchange. While one may be concerned about families
and day care centers matching outside the centralized system, in practice, day care centers
often do not freely choose which children to accept as some priorities are imposed by law
and designed to ensure that places are allocated to those children who need them the most.
In tuition exchange, the home university is in charge of selecting students, meaning that
students and host universities do not have any possibility to re-match outside of the central

3Abdulkadiroglu and Sönmez (2003) refer to stability as the elimination of justified envy to highlight this
fairness interpretation.
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allocation. It is however both fair and in the home university’s interest to send the students
who have the strongest applications. Fourth, Delacrétaz, Kominers, and Teytelboym (2016)
identify an additional reason why stability is desirable in refugee resettlement: it balances the
preferences of refugee families and the priorities of local areas, giving the latter an incentive
to participate in the resettlement program.

In a matching market where all agents have the same size (e.g. school choice), the set
of stable matchings is nonempty and forms a lattice (Gale and Shapley, 1962; Roth and
Sotomayor, 1990). This ensures the existence of an agent-optimal stable matching, that is a
stable matching that makes all agents weakly better-off than all other stable matchings. Fur-
ther, Gale and Shapley’s (1962) agent-proposing Deferred Acceptance algorithm (Algorithm
1) finds this matching. This is no longer true in a matching market with sizes. The set of
stable matchings may be empty (Example 1) and, if nonempty, it may contain multiple agent-
undominated stable matchings instead of an agent-optimal stable matching (Example 2).4 In
addition, even when an agent-optimal stable matching exists, Gale and Shapley’s (1962)
agent-proposing Deferred Acceptance algorithm may fail to find it (Example 3). Matching
markets with sizes call for different techniques that account for these differences.

Summary of the Results
The first part of the paper (Sections 3 and 4) focuses on stable matchings. The Top-

Down Bottom-Up (TDBU) algorithm (Algorithm 2) iteratively identifies agents and
objects that are not matched together in any stable matching. We combine it with a depth-
first search in order to find an agent-undominated stable matching whenever the set of stable
matchings is nonempty (Theorem 1). In the second part of the paper (Section 5), we show
that eliminating waste and bounding instability to a given number of units per object are
conflicting desiderata: at any non-wasteful matching, an agent who prefers an object to his
own may have a higher priority than all agents matched to that object (Theorem 2). We in-
troduce size-stability, a non-wasteful relaxation of stability that allows double-unit agents
to envy single-unit agents. We argue that size-stable matchings that are undominated from
the point of view of double-unit agents constitute a suitable solution concept because they
are fair to double-unit agents despite the fact that their priorities may be violated. We show
that such a matching exists (Corollary 5). The third and last part of the paper (Section 6)
adapts our techniques in order to find a size-stable matching that is undominated from the
point of view of double-unit agents (Theorem 3).

In the first part of the paper (Sections 3 and 4), we develop new techniques to find a stable
4An agent-undominated stable matching is such that, in every other stable matching, at least one agent

is strictly worse-off.
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matching. We first introduce the Top-Down Bottom-Up (TDBU) algorithm (Algorithm 2),
which iteratively eliminates agent-object pairs that are not part of any stable matching. This
principle lies at the heart of Gale and Shapley’s (1962) Deferred Acceptance (DA) algorithm
(Algorithm 1). In every round of the agent-proposing DA algorithm, each agent proposes to
his favorite object that has not rejected him yet. Every object tentatively accepts proposing
agents in order of priority up to its quota and rejects all remaining proposals. This process
is repeated until a round occurs where all proposals are tentatively accepted. At that point,
every agent is matched to the last object to which he proposed. If an object rejects an agent
in any round, then the pair is not part of any stable matching as this would make a higher-
priority agent worse-off and create a blocking pair. Therefore, the DA algorithm iteratively
eliminates pairs that are not part of any stable matching.

The Top-Down part of the TDBU algorithm adapts the agent-proposing Deferred Accep-
tance algorithm. Objects reject agents whose priority is too low for the pair to be part of a
stable matching. An agents no longer contests an object after a rejection. The Bottom-Up
part of the algorithm adapts the object-proposing Deferred Acceptance algorithm.5 Objects
give a guarantee to agents whose priority is too high for them to be matched to a less pre-
ferred object in a stable matching. An agent who receives a guarantee no longer contests any
of his less preferred objects. In the terminology of the Deferred Acceptance algorithm, this
corresponds to agents’ rejecting objects. The TDBU algorithm stops when it can no longer
identify any guarantee or rejection. It is polynomial-time solvable and simplifies the match-
ing market by reducing the number of agent-object pairs that need to be considered. At the
end of the algorithm, it is possible to match every agent to his favorite object among the
ones he is still contesting. That matching is the agent-optimal stable one if it is feasible, that
is if every object is available in sufficiently many units to accommodate all agents matched
to it. Since the capacity of each object may be violated by at most one unit, this matching
may unfortunately not be feasible (Proposition 4).

The Undominated Stable Matching (USM) algorithm (Algorithm 3) first runs the
TDBU algorithm. If the agent-optimal stable matching is not found in this way, it restricts
its search to stable matchings that match specific agents and objects. In each round, one
agent-object pair is protected in the sense that the search focuses on stable matchings that
match the agent and object in that pair. The TDBU algorithm runs again in order to identify
agent-object pairs that are not matched together in any such stable matching. This continues
until either a stable matching that satisfies these restricted criteria is found or it is established

5In this version of the algorithm, objects propose – up to their quotas – to the agents with the highest
priority. Each agent tentatively accepts the proposal of his favorite object and rejects all others. In a market
where all agents have the same size, this algorithm produces the agent-pessimal (or object-optimal) stable
matching, that is the one that makes all agents weakly worse-off than all other stable matchings.
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that none exists, in which case the USM algorithm protects different pairs. Eventually, it
either finds a stable matching – which is undominated because of the way pairs are protected
– or establishes that the set of stable matchings is empty (Theorem 1).

In the second part of the paper (Section 5), we develop alternatives to stability. Stability
is characterized in this model by the combination of three properties: 1-boundedness, size-
consistency and non-wastefulness (Proposition 2). For any nonnegative integer K, a matching
is K-bounded if, for any agent-object pair where the agent prefers the object to his own, at
most K units of the object are either unassigned or assigned to agents with a lower priority.
K-boundedness constitutes a fairness criterion in the sense that it bounds the number of
units that an agent can claim given his priority. A matching is size-consistent if, for any
agent-object pair where the agent prefers the object to his own, all agents matched to that
object have either a lower priority or a larger size. Size-consistency also constitutes a fairness
criterion as it ensures that any violation of priority is due to agents having different sizes. A
matching is non-wasteful if, for any agent-object pair where the agent prefers the object to
his own, the object has enough unassigned units for the agent to be matched to it without
removing any other agent. Non-wastefulness constitutes both a fairness and an efficiency
criterion as it ensures that units only remain unassigned if they cannot benefit any agent.

We show that, for any nonnegative integer K, the existence of a K-bounded and non-
wasteful matching is not guaranteed (Theorem 2). In contrast, Delacrétaz, Kominers, and
Teytelboym’s (2016) Priority-Focused Deferred Acceptance (PFDA) algorithm (Algorithm
4) finds a matching that is 1-bounded and size-consistent (Proposition 8), which implies the
existence of such a matching. The disadvantage of this solution is that one unit per object may
be wasted. Size-stability constitutes a non-wasteful alternative. In a size-stable matching,
double-unit agents may envy single-unit agents but all other priorities are respected and
every unit is assigned unless it cannot benefit any agent. We show that size-consistency and
non-wastefulness characterize size-stability (Proposition 8) and that the set of size-stable
matchings is nonempty (Proposition 10). Although size-consistency and non-wastefulness
are two fairness criteria, size-stable matchings may be unfair to double-unit agents because
there does not exist any bound on how many single-unit agents may violate their priority.
In order to alleviate this problem, we propose d-undominated size-stable matchings as
a solution concept. A d-undominated size-stable matching is such that all other size-stable
matchings make at least one double-unit agents worse-off. These matchings maximize the
welfare of double-unit agents given the size-stability constraint.

The third and last part of the paper (Section 6) is devoted to finding a d-undominated
size-stable matching. The Permissive Top-Down Bottom-Up (p-TDBU) iteratively
eliminates agent-object pairs in a way that is adapted to size-stability. The d-Undominated
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Size-Stable Matching (d-USSM) algorithms (Algorithm 6) conducts a depth-first search
that ultimately produces a d-undominated size-stable matching (Theorem 3). In every round,
a set of agent-object pairs is protected and the p-TDBU algorithm is used to reduce the
number of agent-object pairs that need to be considered.

Related Literature
Various approaches have been proposed to find a stable matching in couples problems.

These are valid in our model, which is a special case where both partners want to work in the
same hospital and are ranked identically by every hospital. The latest redesign of the National
Resident Matching Program’s (NRMP) algorithm took place in 1998. An “engineering”
solution was implemented for this specific market (Roth and Peranson, 1997, 1999; Roth,
2003). Singles are matched first with the Deferred Acceptance algorithm. Couples are then
introduced one at a time, following a random order. Whenever a couple enters, blocking
pairs (medical graduates and hospitals who would rather be matched together than with
their current partner) are matched until none remains. This algorithm may fail to find a
stable matching even when one exists (Kojima, 2015) and, should one be found, it is not
clear how it compares to other stable matchings in terms of doctor and hospital welfare.6

Biró, Fleiner, and Irving (2016) and Biró and Fleiner (2016) propose an alternative approach
based on Scarf’s (1967) lemma. They argue using experimental and simulation evidence that
this approach outperforms Roth and Peranson’s (1997, 1999) in the sense that it finds a stable
matching in more instances, particularly when the proportion of couples in the market is high.
This does not mean, however, that it finds a stable matching in all instances where one exists.
The algorithm proposed in this paper has the advantage of finding an agent-undominated
stable matching whenever the set of stable matchings is nonempty.

Echenique and Yenmez (2007) study a college admission model where students have pref-
erences over colleges as well as over the set of colleagues with whom they attend. The authors
propose an algorithm based on each stable matching being a fixed point of an increasing func-
tion. It either finds all stable matchings or indicates that none exists. Kojima (2015) adapts
this approach to couples problems and, by extension, to our model. From a computational
point of view, Echenique and Yenmez (2007) admit that the algorithm may, in some cases,
need to check every possible matching, though they argue it is unlikely to happen. The Top-
Down Bottom-Up (TDBU) algorithm reduces the number of agent-object pairs that need
to be considered in polynomial time. The depth-first search part may be computationally

6A stable matching has however been found every year since the redesign, making the solution a satisfying
one for this specific application. In addition, whether the algorithm uses a doctor- or hospital-proposing
procedure appears to have little impact on the outcome (Roth and Peranson, 1997).
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more intensive7 but does not require looking through every possible matching since many
are eliminated by the TDBU algorithm at the start of every round. Another computational
advantage is that our algorithm only needs to find one stable matching and guarantees that
the latter is undominated. Kojima’s (2015) algorithm requires finding all stable matchings
before some of them can be identified as undominated.

Biró, Manlove, and McBride (2014) propose to use integer programming techniques to
find a stable matching in the couples problem. While not considered in their paper, it may
be possible to add an additional objective function in order to ensure that an undominated
stable matching is found. Comparing the computational properties of these techniques with
our USM algorithm lies beyond the scope of this paper. We see the two approaches as comple-
mentary for two reasons. First, there does not exist any polynomial-time solvable algorithm
that finds a stable matching in this model (McDermid and Manlove, 2010). Consequently,
the size of the market is key to an algorithm’s ability to find a stable matching in a timely
manner. As the TDBU algorithm is polynomial-time solvable, it can be used first to reduce
the size of the market, thus substantially reducing the running time of any algorithm that
finds a stable matching or report that the set of stable matchings is empty. Second, an
important concern when it comes to practical applications is that the participants be able
to understand how the algorithm works. The general idea behind the TDBU algorithm –
which is based on Deferred Acceptance – and the depth-first search of the USM algorithm
are intuitive and can be explained with relative ease. This can prove useful even in the hypo-
thetical case where an equivalent but more efficient algorithm is ultimately used to calculate
the matching. Third and last, our algorithms are constructive in the sense that they shed
light on the structure of the problem. For example, the TDBU algorithm allows precisely
identifying the case where an object is matched beyond capacity (Corollary 2).

Refugee resettlement (Delacrétaz, Kominers, and Teytelboym, 2016) constitutes a differ-
ent extension of the present model. Refugee families require several units of different services
(e.g. housing, school places or training programs) that can be provided by local areas, lead-
ing to a matching market with multi-dimensional constraints. Delacrétaz, Kominers, and
Teytelboym’s (2016) Top Choice algorithm adapts our USM algorithm to this more general
setup and finds an undominated stable matching whenever one exists. The multidimensional
constraints however imply that even the TDBU algorithm is not polynomial-time solvable
in this context. Additionally, our USM algorithm takes advantage of the relative structure
offered by the present model in order to protect specific agent-object pairs. The Top Choice
algorithm could be used in our model but would be less efficient as a result. Delacrétaz,

7McDermid and Manlove (2010) show that finding whether or not a stable matching exists in this model
is an NP-complete problem.
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Kominers, and Teytelboym (2016) also provide a wasteful relaxation of stability. We show
that their Priority-Focused Deferred Acceptance (PFDA) algorithm (Algorithm 4) finds a
1-bounded and size-consistent matching in our model.

Biró and McDermid (2014) study an extension of our model where agents’ sizes lie between
1 and n ≥ 2. They show that, if the quota of each object is increased or decreased by at most
n − 1 units, then a polynomial-time solvable algorithm exists that finds a stable matching.
In our model, n = 2 so the quotas need to change by at most one unit. Dean, Goemans,
and Immorlica (2006) and Yenmez (2014) each propose a polynomial-time algorithm based
on deferred acceptance that are achieves these bounds. The matching produced by Dean,
Goemans, and Immorlica’s (2006) algorithm is stable if the capacity of each object is increased
by at most n − 1 units8 and the one produced by Yenmez’ (2014) algorithm is stable if the
capacity of each object is decreased by at most n−1 units.9 Nguyen and Vohra (2017) derive
a similar result for the couples problem. Increasing or decreasing the quota of each object
(hospital) by at most two units allows finding a market where a stable matching exists. In
addition, the sum of quotas does not decrease and increases by at most four units. Our
approach differs in the fact that we consider fixed quotas and do not modify them. Some
of the algorithms we introduce nevertheless relate to this literature. The TDBU algorithm
(Algorithm 2) finds a matching that is stable if at most one unit of capacity is added to
each object. Whenever an extra unit is added, it benefits a single-unit agent while in Dean,
Goemans, and Immorlica’s (2006) algorithm it benefits a double-unit agent. Delacrétaz,
Kominers, and Teytelboym’s (2016) PFDA algorithm (Algorithm 4) finds a matching that is
stable if at most one unit of capacity is removed from each object. That matching dominates
the one produced by Yenmez’ (2014) algorithm because the PFDA allows single-unit agents
to be assigned the last unit of an object in some cases while Yenmez’s (2014) algorithm
precludes it.

Kennes, Monte, and Tumennasan (2014) study the assignment of children to day care
centers in a dynamic context, taking into account the fact that children may move from one
center to another once they have secured a place. The authors do not consider the part-time
feature of day care and effectively build a dynamic extension of the school choice model,
framed in the context of day care. Considering the dynamic aspect of day care is certainly

8Cseh and Dean (2016) adapt that algorithm in order to find a matching that minimizes the total number
of units that need to be added.

9Yenmez (2014) studies a model of college admissions with contracts. Sizes are introduced by the fact
that students can take up either a full place or a fraction 1/n of a place. Stability obtains by assuming that
colleges do not need to fill up their capacity, instead they reject students as soon as they have less than a full
place available. This can be translated into the model of Dean, Goemans, and Immorlica (2006) and Biró
and McDermid (2014) by letting a full place be equal to n units of capacity. Then a college stops filling up
its quota once it has n− 1 or less units available.
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worthwhile, however the success encountered by the reforms of school choice systems across
the world suggests that taking care of that static problem can already greatly improve the
way the market operates. A dynamic mechanism that caters for agents of different sizes could
then lead to further improvements.

Finally, Dur and Ünver (2017) consider a different aspect of tuition exchange. Their
emphasis lies on the balance of students between the two partners and its impact on exchange
agreements in a dynamic environment. We instead take the terms of the agreements as given
and focus on one university selecting which students it will send to its partners.

The remainder of the paper is organized as follows. Section 2 describes the setup
and presents some preliminary results about stability. Section 3 introduces the Top-Down
Bottom-Up (TDBU) algorithm, which eliminates agent-object pairs that are not part of any
stable matching. We combine the TDBU algorithm with a depth-first search in Section
4 in order to find an undominated stable matching whenever one exists. Section 5 shows
that a K-bounded and non-wasteful matching may not exist and introduces d-undominated
size-stable matchings as a non-wasteful relaxation of stability. In Section 6, we adapt the
techniques from Sections 3 and 4 in order to find a d-undominated size-stable matching.
Section 7 concludes and all proofs are in the appendix.

2 Preliminaries

2.1 Setup

There are a set A of agents and a set O of objects. Each object o ∈ O is available in qo ≥ 1

identical units. We refer to qo as the quota of object o and define the quota vector q to be
the |O|-dimensional vector containing all quotas. The set of agents is partitioned into two
subsets S and D. Agents in S are the single-unit agents and require one unit. Agents
in D are the double-unit agents and require two units of the same object.10 We define
wa ∈ {1, 2} such that wa ≡ 1 if a ∈ S and wa ≡ 2 if a ∈ D to be the size of agent a. The
size vector w is the |A|-dimensional vector containing the size of all agents. We assume the
existence a null object, denoted ∅, with a large enough quota to accommodate all agents:
q∅ =

∑
a∈A wa = 2|D|+ |S|.

10In school choice, agents are students, objects are schools, and units are seats in a school. All students are
single-unit agents. In day care, agents are children (or their parents), objects are day care centers and units
are part-time places in a center. Single-unit agents are children who require a part-time place and double-unit
agents are children who require a full-time place. In tuition exchange, agents are students, objects are host
universities, and units are places to go on exchange for a semester. Single-unit agents are students who want
to go on exchange for a semster and double-unit agents are students who want to go on exchange for a year.
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Agents have strict, transitive and ordinal preference relations over all objects. The
preference relation of agent a is denoted ≻a and o ≻a o

′ signifies that agent a prefers object
o to object o′. We denote the weak preference relation by o ≽a o′, which means that either
o ≻a o

′ or o = o′. The preference profile is a |A|-tuple of preference relations ≻≡ (≻a)a∈A,
which contains the preference relations of all agents. An object is acceptable to an agent
if he prefers it to the null object. For every object other than the null, agents are ranked in
order of priority. ◃o represents the priority relation of object o and consists of a strict and
transitive ranking of all agents. a ◃o a

′ signifies that agent a has a higher priority than agent
a′ for object o. We denote the weak priority relation by a Do a′, which means that either
a ◃o a

′ or a = a′. The priority profile is a |O|-tuple ◃ ≡ (◃o)o∈O containing the priority
relations of all objects.11 A market is a tuple ⟨A,O,≻,◃,w,q⟩.

The only difference between this model and school choice (Abdulkadiroglu and Sönmez,
2003) is the existence of double-unit agents. We next illustrate the impact that this seemingly
small difference has on the set of stable matchings.

2.2 Stable Matchings

Throughout the paper, we consider sets of agent-object pairs X ∈ 2A×O. Where there is no
risk of confusion, we use the term pair to refer to an agent-object pair. We say that agent a
contests object o at set of pairs X if (a, o) ∈ X. We denote by Oa(X) ≡ {o ∈ O | (a, o) ∈ X}
the set of objects contested by a. The top choice of a at X, denoted oa(X), is the object
that a prefers among those that he contests. Formally, oa(X) ≡ o ∈ Oa(X) such that o ≽a o

′

for all o′ ∈ Oa(X). An agent who does not contest any object does not have a top choice.
An object that is contested by agent a but is not his top choice is referred to as one of
a’s subsequent choices. An agent who contests at most one object does not have any
subsequent choice.

A set of pairs X is complete if every agent contests at least one object. We denote the
set of complete sets of pairs by X ≡ {X ∈ 2A×O | |Oa(X)| ≥ 1 for all a ∈ A}. A matching is
a set of pairs where every agent contests exactly one object. We denote the set of matchings
by M ≡ {µ ∈ 2A×O | |Oa(µ)| = 1 for all a ∈ A}. For any matching µ ∈ M, we say that agent
a is matched to object o at µ if (a, o) ∈ µ. In that case, we say that a is assigned wa units
of o at µ.

11In order to keep the model as simple as possible, it is assumed that even the agent with the lowest priority
can get an object so long as its units are not claimed by other agents. This assumption is natural in a model
where the focus lies on agent welfare and without loss of generality since an eligibility threshold under which
an agent cannot be matched to an object can be introduced by ranking the objects after the null one in the
agent’s preference relation.
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For any set of pairs X ∈ 2A×O, we denote the set of agents who contest o at X by
Ao(X) ≡ {a ∈ A | (a, o) ∈ X} and the set of agents who contest o at X as their top choice by
Ao(X) ≡ {a ∈ A | oa(X) = o}. For a matching µ, Ao(µ) = Ao(µ) denotes the set of agents
who are matched to o at µ. A matching is feasible if for every object the number of units
assigned does not exceed the quota. Formally, µ ∈ M is feasible if

∑
a∈Ao(µ)

wa ≤ qo for all
o ∈ O.

We are now in a position to formally define stable matchings. For any n ≥ 1, an agent
a has a n-unit claim to an object o at matching µ if he prefers o to his own object and at
least n units of o are either unassigned or assigned to agents with a lower priority. Formally,
a has a n-unit claim to o at µ if o ≻a oa(µ) and

∑
a′∈Â(a,o)(µ)

wa′ ≤ qo − n, where Â(a,o)(X) ≡
{a′ ∈ Ao(X) | a′ ◃o a} denotes the set of agents who contest o at X and have a higher priority
for it than a. We say that an agent has a claim to n units of o if he has a n-unit claim to
that object. The pair (a, o) is a blocking pair of matching µ if a has a wa-unit claim to o

at µ.

Definition 1. A matching is stable if it is feasible and does not have any blocking pair.

We denote by S ⊆ M the set of stable matchings. Definition 1 naturally extends the
concept of stability from Gale and Shapley (1962) to a setup with single- and double-unit
agents and is equivalent to it if all agents require one unit. Double-unit agents may have a
1-unit claims to some objects without affecting stability. This does not create a blocking pair
because double-unit agents need two units in order to be matched to an object.

Domination is a partial order on the set of matchings M. We say that matching µ

dominates matching µ′ ̸= µ if oa(µ) ≽a oa(µ
′) for all a ∈ A. In words, µ dominates µ′ if

it makes all agents weakly better-off and at least one agent strictly better-off. We are in
particular interested in partially ordering stable matchings. A stable matching µ ∈ S is an
undominated stable matching if there does not exist any stable matching µ′ ∈ S such that
µ′ dominates µ. A stable matching µ is the optimal stable matching if, for every stable
matching µ′ ̸= µ, µ dominates µ′. An undominated stable matching exists as long as the set
of stable matchings is nonempty. If there exists a unique undominated stable matching, then
it is the optimal stable matching. Otherwise, the market does not have an optimal stable
matching.

2.3 Preliminary Results

If all agents require one unit (wa = 1 for all a ∈ A) (as in the school choice model), an optimal
stable matching exists and the agent-proposing deferred acceptance algorithm (Algorithm 1)
finds it (Gale and Shapley, 1962; Abdulkadiroglu and Sönmez, 2003). This is no longer
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true in general if there are both single- and double-unit agents, as we illustrate next. The
set of stable matchings may be empty (Example 1) or contain multiple undominated stable
matchings (Example 2). Additionally, the agent-proposing Deferred Acceptance algorithm
may produce an unstable matching, even when an optimal stable matching exists (Example
3).

Example 1 (No Stable Matching). There are two single-unit agents s1 and s2, one
double-unit agents d1 and two non-null objects o1 and o2. The preferences, priorities and
quotas are detailed below:

≻s1 : o1, o2, ∅ ≻d1 : o1, ∅, o2 ◃o1 : s2, d1, s1 qo1 = 2

≻s2 : o2, o1, ∅ ◃o2 : s1, s2, d1 qo2 = 1

We show that the market presented in Example 1 does not have any stable matching.
If d1 is matched to o1, then s1 is not by feasibility. As s1 has the highest priority for o2, a
blocking pair is formed unless he is matched to it. In that case however, s2 is unmatched and
forms a blocking pair with o1. If d1 is not matched to o1, s2 is as otherwise (d1, o1) constitutes
a blocking pair. Then s2 and o2 form a blocking pair unless s1 is matched to o2. In this case
however, (s1, o1) constitutes a blocking pair.

We next illustrate the fact that, even when the set of stable matchings is nonempty, it
may not have the structure it has in canonical models.

Example 2 (Multiple USMs). There are two single-unit agents s1 and s2, two double-
unit agents d1 and d2 and two non-null objects o1 and o2. The preferences, priorities and
quotas are detailed below:

≻s1 : o1, o2, ∅ ≻d1 : o1, ∅, o2 ◃o1 : s2, d1, s1, d2 qo1 = 2

≻s2 : o2, o1, ∅ ≻d2 : o2, ∅, o1 ◃o2 : s1, d2, s2, d1 qo2 = 2

We show that the market presented in Example 2 has two undominated stable matchings:

µ ≡ {(s1, o1), (s2, o1), (d1, ∅), (d2, o2)} and µ′ ≡ {(s1, o2), (s2, o2), (d1, o1), (d2, ∅)}.

If s1 is matched to o1, then d1 is not by feasibility. The latter is then matched to the null
object as he finds o2 unacceptable. Additionally, stability dictates that d2 be matched to o2

as he has the second highest priority for that object behind s1, who is not matched to it. s2

is consequently not matched to o2 as this would violate feasibility. He is matched to o1 as
otherwise he would have a claim to an unassigned unit of that object. We obtain matching
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µ. s1 and d2 do not have a claim since they are matched to their first preference. s2 is
matched to his second preference but does not have a claim to his first one, o2, as both units
of that object are assigned to the higher priority agent d2. d1 is also matched to his second
preference, however he only has a 1-unit claim to his first preference, o1, as one unit of that
object is assigned to the higher priority agent s2. µ is consequently stable. By an analogous
reasoning, µ′ is the only stable matching where s2 is matched to o2. If neither s1 nor s2 is
matched to his first preference, stability dictates that they both be matched to their second
one as they have the highest priorities for these objects. That is, s1 is matched to o2 and s2 is
matched to o1. By feasibility, d1 and d2 are both matched to the null object. The matching
obtained is not stable as it has two blocking pairs: (s1, o1) and (s2, o2). We conclude that
µ and µ′ are the only two stable matchings in this market. As µ favors s1 and d2 while µ′

favors s2 and d1, they are both undominated stable matchings.
We have seen in the above two examples that an optimal stable matching may not exist,

instead the set of stable matchings may be empty or contain multiple undominated stable
matchings. An obvious implication is that, contrary to the school choice model, the Deferred
Acceptance algorithm does not always find the optimal stable matching. A natural question is
then whether the Deferred Acceptance algorithm finds the optimal stable matching whenever
it exists. We answer in the negative by presenting a counterexample.

Example 3 (DA Fails). There are three single-unit agents s1, s2 and s3, two double-unit
agent d1 and d2 and three non-null objects o1, o2 and o3. The preferences, priorities and
quotas are detailed below:

≻s1 : o1, o3, o2, ∅ ≻d1 : o1, o3, o2, ∅ ◃o1 : s3, d1, d2, s1, s2 qo1 = 2

≻s2 : o3, o2, o1, ∅ ≻d2 : o3, ∅, o2, o1 ◃o2 : s1, s2, d2, s3, d1 qo2 = 1

≻s3 : o2, o1, o3, ∅ ◃o3 : s3, d1, d2, s1, s2 qo3 = 2

We show that
µ = {(s1, o1), (s2, o2), (s3, o1), (d1, o3), (d2, ∅)}

is the unique stable matching in this market, which directly implies that it is the optimal one.
Consider first the case where d2 is matched to o3. By feasibility, no other agent is matched to
that object. Then one of s1 or s2 is matched to o2 as otherwise (s2, o2) constitutes a blocking
pair. Again by feasibility, this means that s3 is not matched to o2. As s3 has the highest
priority for his second preference, o1, he is matched to that object. Feasibility then prevents
d1 from being matched to o1. d1 is consequently matched to an object he ranks below o3 so
that (d1, o3) constitutes a blocking pair. As d2 finds o1 and o2 unacceptable, we conclude that
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Algorithm 1: Agent-Proposing Deferred Acceptance (Gale and Shapley, 1962)

Initialization:
Given a market, let X1 ≡ A×O.
Round k ≥ 1:

Given Xk, every agent a ∈ A proposes to his top choice oa(Xk).
For each object o, agents are considered one at a time in order of priority. An
agent is tentatively accepted if the total number of units required by himself
and all tentatively accepted agents with a higher priority does not exceed qo.
The agent is rejected otherwise.
If all agents are tentatively accepted, let µDA ≡ µ(Xk). Otherwise, construct
Xk+1 by eliminating from Xk all pairs involving an agent and an object such
that the latter has rejected the former’s proposal and continue to Round k+1.

Round 1 Round 2 Round 3 Round 4 Round 5
s1→ o1 7 s1→ o3 7 s1→ o2 3 s1→ o2 3 s1→ o2 3

s2→ o3 7 s2→ o2 3 s2→ o2 7 s2→ o1 3 s2→ o1 3

s3→ o2 3 s3→ o2 7 s3→ o1 3 s3→ o1 3 s3→ o1 3

d1→ o1 3 d1→ o1 3 d1→ o1 7 d1→ o3 3 d1→ o3 3

d2→ o3 3 d2→ o3 3 d2→ o3 3 d2→ o3 7 d2→ ∅ 3

Table 1: DA algorithm on Example 3.

he is matched to the null object in all stable matchings. One of s3 or d1 is matched to o3 as a
result, otherwise (d2, o3) constitutes a blocking pair. If s3 is matched to o3, however, (s3, o1)
constitutes a blocking pair since s3 prefers o1 to o3 and has the highest priority for it. We
conclude that d1 is matched to o3 in all stable matchings. This implies that s3 is matched to
o1 as otherwise (d1, o1) constitutes a blocking pair. Additionally, s1 and o1 form a blocking
pair if they are not matched together since o1 is s1’s first preference and neither d1 nor d2

is matched to it. s2 is not matched to o3 by feasibility and therefore forms a blocking pair
with o2 unless he is matched to it. We conclude that µ is the unique stable matching in this
market, which directly implies that it is the optimal one.

The agent-proposing Deferred Acceptance algorithm is presented in Algorithm 1. Table
1 displays its steps when applied to Example 3. In Round 1, every agent proposes to his first
preference. o1 rejects s1 because it also has a proposal from d1 who has a higher priority and
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it does not have enough units for both agents. o3 similarly rejects s2 because of d2. It is
already clear at this point that the Deferred Acceptance algorithm does not produce µ since
s1 no longer contests o1. In Round 2, s1 proposes to his second choice o3 and, like s2 in the
previous round, is rejected because of d2. s2 proposes to o2, leading to that object rejecting
s3. In Round 3, s1 is down to his third preference: o2. He is tentatively accepted this time as
he has the highest priority for that object, however o2 has a quota of one unit, meaning that
s2 is rejected. Meanwhile, s3 proposes to o1, his second preference and is likewise tentatively
accepted as he has the highest priority for that object. d1 is rejected as a result since only
one unit of o1 remains available. This is where a blocking pair is created. o1 rejected s1 in
Round 1 because of d1. Now that s3 has replaced d1, one unit has become available but s1

can no longer benefit from it as he was rejected earlier on. In Round 4, s2 benefits from
that available unit as he proposes to o1. The blocking pair remains however as s1 ◃o1 s2. d1

proposes to o3 after o1 rejected him. He is tentatively accepted as he has a higher priority
than d2. The latter is rejected as o3 has a quota of two. Finally, d2 proposes to the null
object in Round 5. None of the agents are rejected and the algorithm ends. It generates

µDA = {(s1, o2), (s2, o1), (s3, o1), (d1, o3), (d2, ∅)}.

This matching is not stable since (s1, o1) constitutes a blocking pair. Combining the infor-
mation gathered through our three examples yields the following result.12

Proposition 1. The set of stable matchings may be empty or contain multiple undominated
stable matchings. The Deferred Acceptance algorithm may produce an unstable matching even
if an optimal stable matching exists.

2.4 Characterization of Stability

We introduce three properties that characterize stability and will prove crucial throughout
the remainder of the paper. In Sections 3 and 4, we search for a matching that satisfies all
three properties. That matching is then stable by our characterization result. In Sections 5
and 6, we propose relaxations of stabilitythat are characterized by subsets of these properties.

The first property bounds the size of claims that may exist at a given matching. For
any nonnegative integer K, a matching µ ∈ M is K-bounded if there does not exist any
K +1-unit claim at µ. If a matching is K-bounded, an agent has the assurance that at most
K units of an object he prefers to his own are either unassigned or assigned to agents with a

12McDermid and Manlove (2010) show that the set of stable matchings may be empty in this model. They
also show that no polynomial-time solvable algorithm finds a stable matching whenever one exists, which
implies the last part of the statement as Deferred Acceptance is polynomial-time solvable.
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lower priority. This constitutes a fairness criterion as a matching may be seen as “reasonably
fair” if only a small proportion of the units available are not assigned to the agents with the
highest priority.

The second property ensures that priorities may only be violated when agents have differ-
ent sizes. Given a matching µ ∈ M, we say that agent a envies agent a′ at µ if oa′(µ) ≻a oa(µ)

and a ◃o a
′. That is, a envies a′ if he would prefer to be matched to a′’s object and has a

higher priority for it. A matching µ is size-consistent if for all a, a′ ∈ A such that a envies
a′ at µ, wa > wa′ . In words, double-unit agents only envy single-unit agents and single-unit
agents do not envy anyone. This again constitutes a fairness criterion: if an agent’s priority
is violated, this can be justified by his larger size.

The third and last property is common in matching theory. A matching µ ∈ M is waste-
ful if an agent a has a claim to at least wa unassigned units of an object o at µ. Formally, µ
is wasteful if there exists a ∈ A and o ∈ O such that o ≻a oa(µ) and

∑
a′∈Ao(µ)

wa′ ≤ qo −wa.
Waste arguably constitutes the worst kind of blocking pair since the units to which an agent
has a claim do not even benefit an agent with a lower priority. As such, non-wastefulness
constitutes both a fairness and an efficiency criterion. We are now in a position to state our
characterization result.

Proposition 2. A feasible matching is stable if and only if it is 1-bounded, size-consistent
and non-wasteful.

3 Top-Down Bottom-Up (TDBU)
The Deferred Acceptance algorithm fails to produce a stable matching in Example 3 because
s1 proposes to o1 “at the wrong time”. That is, s1 proposes to o1 in Round 1 when the
latter also receives a proposal from a double-unit agent with a higher priority. Had s1 been
able to wait for d1 to be rejected, he would have been accepted as s3 only requires one unit.
A solution to improve the Deferred Acceptance algorithm emerges from these observations:
o1 could tentatively accept s1 despite not currently having a unit available for him, in case
one becomes available. This is in part the essence of the Top-Down Bottom-Up (TDBU)
algorithm, which we introduce in this section. We introduce the algorithm in Section 3.1 and
present its properties in Section 3.2. In Section 3.3, we show that the TDBU algorithm finds
the unique stable matching of Example 3.
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3.1 Description

The TDBU algorithm is formally presented in Algorithm 2. Any set of agent-object pairs
X ∈ 2A×O can enter and the algorithm produces φ(X), which is either the empty set or a
complete subset of X. X1 ≡ X enters the first step13 and the algorithm identifies rejections
and guarantees in order to eliminate pairs and obtain X2 ⊆ X1. X2 then enters the second
step, where pairs are again eliminated in order to obtain X3 ⊆ X2. This continues until
some Step K ≥ 1 where either an incomplete set of pairs enters (XK /∈ X) or the algorithm
is unable to eliminate any pair (XK = XK+1). In the former case, XK does not include any
stable matching. The algorithm ends and produces the empty set (φ(X) = ∅). In the former
case, the algorithm ends and produces φ(X) = XK .

Below, we define the rules according to which the TDBU algorithm eliminates pairs in
any given step from the Top-Down and from the Bottom-Up. We begin with the latter.

Bottom-Up
Let X ∈ X be a complete set of agnet-object pairs. For every pair (a, o) ∈ X, the

guarantee number of agent a for object o at X, denoted G(a,o)(X), is obtained by adding
up the size of a and the sizes of all agents who contest o at X and have a higher priority
than him. That is,

G(a,o)(X) ≡ wa +
∑

a′∈Â(a,o)(X)

wa′ .

We say that o gives a a guarantee at X if G(a,o)(X) ≤ qo. In that case, agents with a higher
priority than a may be assigned at most qo − wa units of o in all matchings included in X.
Should a be matched to a less preferred object, (a, o) would constitute a blocking pair. This
means that a is guaranteed to be matched to either o or an object he prefers in all stable
matchings included in X. All pairs that involve a and a less preferred object to o can be
eliminated as they are not an element of any stable matching included in X. We formalize
this idea below.

Lemma 1. If G(a,o)(X) ≤ qo, then for any object o′ ∈ O such that o ≻a o′ and any stable
matching included in X µ ∈ S ∩ 2X , (a, o′) /∈ µ.

Guarantees can be thought of as objects proposing to the agents with the highest priority
up to its quota. These agents have the assurance to be matched to that object in the worst-

13We use the term “Round” for algorithms that start with the full set of pairs A × O and produce either
a matching or the empty set (Algorithms 1, 3, 4, and 6). We use the term “Step” for algorithms that start
with any set of pairs and produce either a complete subset (but not necessarily a matching) or the empty set
(Algorithms 2 and 5). This is to avoid confusion as Algorithms 2 and 5 are used in some rounds of Algorithms
3 and 6, respectively.
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Algorithm 2: Top-Down Bottom-Up (TDBU)

Initialization:
Given a market and a set of agent-object pairs X, let X1 ≡ X.
Step k ≥ 1:
If Xk /∈ X, let φ(X) ≡ ∅. Otherwise, construct Xk+1 by eliminating from Xk all
agent-object pairs such that, at Xk, either the agent receives a guarantee from an
object he prefers or the object rejects the agent.
If Xk+1 = Xk, let φ(X) ≡ Xk. Otherwise, continue to Step k + 1.

case scenario and stop contesting any less preferred object. In the next step, this will reduce
the guarantee numbers agents with a lower priority, potentially allowing some of them to
receive a guarantee.

Top-Down
In contrast to its bottom-up counterpart, the top-down part of the algorithm identifies

pairs such that the agent’s priority is too low in order for him to get that object in any stable
matching. Let again X ∈ X be a complete set of agent-object pairs and let (a, o) ∈ X be one
of those pairs. We define the envy set of agent a for object o at X, denoted E(a,o)(X), to
be the set of agents who would envy a – as defined in Section 2.4 – should he be matched to
o. That is,

E(a,o)(X) ≡ {a′ ∈ A | o ≻a′ oa(X) and a′ ◃o a}.

E(a,o)(X) contains all agents who have a higher priority than a and prefer o to their top
choice at X. In any matching µ ⊆ X where (a, o) ∈ µ, these agents envy a. Agents may be
only be matched to an object for which they have a nonempty envy set in limited instances
as shown in the following lemma.

Lemma 2. For any stable matching µ ∈ S and any object o, there exists at most one agent a
such that (a, o) ∈ µ and E(a,o)(µ) ̸= ∅. Furthermore, a ∈ S, a has the lowest priority among
agents matched to o and

∑
a′∈Ao(µ)

= qo.

Lemma 2 derives from 1-boundedness. If a double-unit agent or multiple single-unit
agents are matched to o and envied, a 2-unit claim exists and the matching is not 1-bounded.
This inevitably occurs if another agent matched to o has a lower priority than a since that
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agent would be envied as well. If
∑

a′∈Ao(µ)
wa′ < qo, at least one unit of o is unassigned.

Any agent who envies a has a claim to the unit assigned to a as well as any unassigned unit,
violating 1-boundedness.

As a counterpart to his guarantee number, we next define the rejection number of agent
a for object o at X, which we denote by R(a,o)(X). This number is calculated by adding up
the size of a, the size of all agents who contest o as their top choice and have a higher priority
than a, and the size of all agents in the envy set of (a, o) at X:

R(a,o)(X) ≡ wa +
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ +
∑

a′∈E(a,o)(X)

wa′ .

Before we turn to the connection between envy sets, rejection numbers and whether an agent-
object pair is an element of any stable matching, let us outline a property that follows almost
directly from the definition of guarantee and rejection numbers.

Lemma 3. Let (a, o) ∈ X ⊆ X ′ with X,X ′ ∈ X. Then

G(a,o)(X) ≤ G(a,o)(X
′) and R(a,o)(X) ≥ R(a,o)(X

′).

Lemma 3 means that, as the TDBU algorithm advances and eliminates more agent-object
pairs, guarantee numbers decrease and rejection numbers increase. The former may allow
finding additional guarantees and, as we see next, the latter may allow finding additional
rejections. Finally, rejection numbers and envy sets are closely related in the following
sense. Suppose that the rejection number of a for o at X exceeds the object’s quota, that
is R(a,o)(X) > qo. Then in any feasible matching µ ⊆ X such that (a, o) ∈ µ, an agent
with a higher priority than a is matched to a less preferred object, meaning he envies a. We
formalize this below.

Lemma 4. If R(a,o)(X) > qo, then for any feasible matching µ ⊆ X, E(a,o)(µ) ̸= ∅.

It will prove convenient throughout the remainder of the paper to define So(X) ≡ Ao(X)∩
S to be the set of single-unit agents who contest object o at X. Similarly, let So(X) ≡
Ao(X) ∩ S be the set of single-unit agents who contest o at X as their top choice and
Ŝ(a,o)(X) ≡ Â(a,o)(X) ∩ S be the set of single-unit agents that contest o at X and have a
higher priority than a. We analogously define Do(X) ≡ Ao(X) ∩ D, Do(X) ≡ Ao(X) ∩ D

and D̂(a,o)(X) ≡ Â(a,o)(X) ∩D. We are now in a position to state conditions under which it
can be established that (a, o) is not an element of any stable matching included in X.

Lemma 5. For any µ ∈ S∩2X , (a, o) /∈ µ if any of the following three conditions is satisfied:
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(i) There exists a′ ∈ E(a,o)(X) such that wa ≥ wa′ or there exists s ∈ Ŝ(a,o)(X) ∩ So(X)

such that E(s,o)(X) ̸= ∅;

(ii) a ∈ D and R(a,o)(X) > qo;

(iii) a ∈ S, R(a,o)(X) > qo and either

– There exists s ∈ So(X) such that R(a,o)(X) > R(s,o)(X) ≥ qo, or

– R(a,o)(X)− qo is odd and for all s ∈ So(X) \ So(X), R(s,o)(X) ≥ qo.

Throughout the paper, we refer to the different parts of Lemma 5 as Conditions (i), (ii) and
(iii). If any of these conditions holds, we say that object o rejects agent a at X. Condition (i)
identifies cases where an object rejects an agent independently of his rejection number. This
occurs when another agent who does not contest the object envies him, making it impossible
for the pair to be an element of any stable matching.14 The first part of Condition (i) derives
directly from size-consistency. If a pair (a, o) satisfied it, then in any matching µ ⊆ X that
contains (a, o), an agent no larger than a envies him. µ is, as a result, not size-consistent,
hence not stable. The second part derives directly from size-consistency and Lemma 2. If
(a, o) satisfies it, then any stable matching µ ∈ S that contains (a, o) contains (s, o) by size-
consistency. As s ◃ a and E(s,o)(X) ̸= ∅, E(a,o)(X) ̸= ∅, which implies that µ is not stable by
Lemma 2. Condition (ii) derives from Lemma 4. If a is a double-unit agent and his rejection
number exceeds qo, he is envied in any feasible matching µ ⊆ X that contains (a, o). This
violates size-consistency as well as 1-boundedness, therefore µ is not stable.

Single-unit agents may in contrast be envied by double-unit agents in a stable matching,
therefore a rejection number above the quota is not enough to draw the same conclusion.
Condition (iii) identifies those cases where it can be inferred that (a, o) is not an element of
any stable matching included in X. The formal proof is left for the appendix, instead we
illustrate this condition in Table 2. Each of the three panels represents an object o that is
available in four units (qo = 4) and the agents that contest it at some set of pairs X. Agents
are displayed in the first column in order of priority (the agent in the first row has the highest
priority and so on). A “T” is displayed in the second column if o is the agent’s top choice.
The third column is devoted to each agent’s rejection number and a cross appears in the
fourth column if the object rejects the agent, that is if the pair satisfies Lemma 5 at X.
We assume for simplicity that all agents’ envy sets are empty at X, therefore each agent’s

14Condition (i) does not play a role when all agent-object pairs enter the TDBU algorithm. If the algorithm
starts with a set X ⊂ A × O, however Condition (i) may allow identifying pairs that are not an element of
any stable matching included in X.
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rejection number is found by adding up his own size and the sizes of all agents with a higher
priority who contest o as their top choice.

In Panel (a), the rejection number of s1 and d2 are their own sizes, respectively 1 and 2. As
o is d2’s top choice, his size counts towards d3’s rejection number, which is 4. s2’s rejection
number is calaculated by adding his size to d2 and d3’s, leading to a rejection number of
2 + 2 + 1 = 5. s3’s rejection number is similarly 2 + 2 + 1 + 1 = 6. s2’s rejection number
exceeds the quota, however o does not reject him as (s2, o) does not satisfy Condition (iii).
The first part of Condition (iii) does not hold since s2 has the highest priority among agents
who contest o as their top choice and have a rejection number larger than or equal to the
quota. The second part does not apply either since s1 contests o as a subsequent choice and
his rejection number is less than the quota. The rationale for o not rejecting s2 is that it
could become s1’s top choice latter on. In that case, d3 would be rejected and a unit would
become available to s2. On the other hand, o rejects s3. This illustrates the first part of
Condition (iii): s2 ∈ So(X), s2 ◃o s3 and R(s2,o)(X) = 5 > 4 = qo. o rejects s3 because even if
a unit were to become available as a result of a double-unit agent’s rejection, it would benefit
s2 and not s3.

Panel (b) illustrates the case where the first part of Condition (iii) is satisfied because
a single-unit agent contests the object as his top choice and has a rejection number equal
to the quota. s4 cannot obtain the unit of o currently assigned to s3 even if o becomes s1’s
top choice, therefore o rejects s4. Panel (c) illustrates another situation where an object
does not reject a single-unit agent with a rejection number above the quota. (s2, o) clearly
does not satisfy the first part of Condition (iii). It does not satisfy the second part either as
R(s2,o)(X)− qo = 6− 4 = 2 is even. The reason why o does not reject s2 is that it rejects d3

as the latter’s rejection number exceeds the quota (Condition (ii)). Therefore, the last unit
of o remains available for s2.

Finally, Panel (d) illustrates a situation where a single-unit agent is rejected because of
the second part of Condition (iii). s1 is rejected as R(s1,o)(X) − qo = 5 − 4 = 1 is odd and
there does not exist any single-unit agent who contests o as a subsequent choice and has a
rejection number below the quota. The rationale for s1’s rejection is that if d4 is rejected,
this will be because o has become the top choice of another double-unit agent, as a result no
unit is made available to s1.

3.2 Results and Discussion

The TDBU algorithm produces a subset of the set of pairs that entered. As our following
proposition formalizes, it however preserves all stable matchings included in that set.
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Panel (a) Panel (b) Panel (c) Panel (d)
o Pref. R (4) o Pref. R (4) o Pref. R (4) o Pref. R (4)

s1 1 s1 1 d1 2 d1 2

d2 T 2 s2 T 1 d2 T 2 d2 2

d3 T 4 d1 T 3 s1 T 3 d3 T 2

s2 T 5 s3 T 4 d3 T 5 7 d4 T 4

s3 6 7 s4 5 7 s2 T 6 s1 5 7

Table 2: Illustration of Condition (iii) from Lemma 5.

Proposition 3. For any X ∈ 2A×O and any stable matching µ ∈ S, µ ⊆ X implies µ ⊆ φ(X).

Proposition 3 almost directly follows from Lemmas 1 and 5, which ensure that none of
the agent-object pairs eliminated throughout are an element of any stable matching included
in X.

The first step towards finding a stable matching is to run the TDBU algorithm over the full
set of pairs A×O in order to narrow down the problem to a smaller set of agent-object pairs.
Our next result states the main properties of φ(A×O). It is useful to define, for any complete
set of agent-object pairs X ∈ X, the top matching of X, denoted µ(X) ≡ {(a, oa(X)}a∈A.
In words, the top matching of any complete set of pairs is the one where all agents are
matched to their top choice.

Proposition 4. φ(A × O) is complete and includes all stable matchings. µ(φ(A × O)) is
1-bounded, size-consistent and non-wasteful. It is the optimal stable matching if and only if
it is feasible and dominates all stable matchings otherwise.

If all agent-object pairs enter the TDBU algorithm, it yields a complete set of pairs
because all agents receive a guarantee from the null object, therefore, an agent contests
the null object. By Proposition 3, that subset includes all stable matchings. Consequently,
any matching that makes an agent better-off compared to µ(φ(A × O)) is unstable, hence
µ(φ(A×O)) is either the optimal stable matching or it is unstable and dominates all stable
matchings.

Running the TDBU algorithm on A×O and matching all agents to their top choice may
allow finding the market’s optimal stable matching, in fact we show in Section 3.3 that this is
the case in Example 3. Unfortunately, the matching obtained in this way may not be stable.
In that case, more agent-object pairs need to be eliminated in order to find a stable matching
or establish that none exists. This is the purpose of Section 4.

The Top-Down Bottom-Up algorithm can be thought of as simultaneously running both
versions of the Deferred Acceptance algorithm, with suitable modifications to fit a setting
where some agents require two units. It creates an upper and a lower bound on the set of
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stable matchings that move towards one another. By the time the algorithm ends, the top
choice of each agent represents an upper bound: the agent cannot get an object he prefers
in any stable matching. The object the agent’s least preferred object among those he still
contests provides a lower bound: the agent cannot be matched to a less preferred object in
any stable matching. In Example 3, those bounds coincide for all agents and the unique
stable matching is found. In matching markets where all agents require one unit (wa = 1

for all a ∈ A), the bounds correspond to the extreme stable matchings: µ(φ(A × O)) is the
optimal stable matching while the pessimal (or object-optimal) stable matching is found by
giving all agents the object they like least among those they contest at φ(A×O).

If the objective is to find the optimal stable matching (or an undominated one), one
might question the purpose of the Bottom-Up part of the algorithm, that is the guarantees.
Determining the worst object with which agents can be matched does not appear directly
relevant to finding an undominated stable matching. The reason comes from the second part
of Lemma 5’s Condition (iii). The existence of a single-unit agent who contests an object as a
subsequent choice may be key to determining whether or not the object rejects a single-unit
agent with a rejection number greater than the quota. If single-unit agents stop contesting
objects below their lower bound, objects may be able to reject single-unit agents that they
could not reject otherwise. Panel (a) of Table 2 illustrates such a situation. o does not reject
s2 because a unit would become available to him should s1 contest o as his top choice later.
If s1 stops contesting o because it can be established that he is matched to an object he
prefers in all stable matchings, then o rejects s2. In Section 3.3, we further illustrate the
importance of guarantees as we show that the TDBU algorithm would not find the optimal
stable matching of Example 3 if it only consisted of its Top-Down part.

We conclude with a remark on computational complexity. In every step, the TDBU
algorithm considers each agent-object pair exactly once to give it a guarantee and a rejection
number and, depending on these numbers, determines whether the agent receives a guarantee,
a rejection or neither. Therefore, the number of substeps required within each step is bounded
by |A| · |O|. In all steps but the last one, at least one pair is eliminated, therefore the number
of steps is also bounded by |A| · |O|. The TDBU algorithm is consequently polynomial-time
solvable. Finding a stable matching is on the other hand an NP-hard problem (McDermid
and Manlove, 2010), which becomes apparent in the next section. The size of the market that
is considered is therefore key to the running time of any algorithm that computes a stable
matching. An advantage of the TDBU algorithm is that it reduces the number of pairs that
need to be considered in polynomial time. It is then possible to compute a stable matching
in a smaller market.
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3.3 Example

We illustrate the TDBU algorithm with Example 3. As we have seen, the DA algorithm fails
to find a stable matching in that market. We show that, in contrast, the TDBU algorithm
finds the unique (and thus optimal) stable matching.

All computation steps are displayed in Table 3. Each panel is devoted to a non-null
object and contains six columns. Agents who contest the object are displayed in the first
column in order of priority. Each row within a panel is therefore devoted to an agent-object
pair. The agent’s ordinal preference for the object is displayed in the second column. Given
the important role of top choices in determining rejection numbers, we denote them by “T”.
We use “U” (“unacceptable”) if the agent prefers the null to the object. These pairs are
eliminated in the first step as the null object gives by definition a guarantee to all agents.
The guarantee and rejection numbers associated with the pair are respectively displayed in
the third and fourth columns. The fifth column displays a check mark if the object gives the
agent a guarantee and a cross if it rejects him. We write “El.” in the sixth and last column if
the pair is eliminated. This occurs when either the agent receives a guarantee for an object
he prefers or the object rejects the agent. Eliminated pairs do not enter the next step. They
may however still impact rejection numbers as the agent may join the envy set of an agent
with a lower priority who still contests the object.

Step 1
All agent-object pairs enter the first step: X1 ≡ A×O. In the first panel, devoted to o1,

the agents are displayed in order of priority. o1 is d1 and s1’s top choice, s3’s second choice,
s2’s third choice and is unacceptable to d2. As s3’s is a single-unit agent and lies at the top
of the priority list, both his guarantee and rejection numbers are 1. d1’s guarantee number
is 3 (=1+2) but his rejection number is only 2 since o1 is not s3’s top choice. d2’s guarantee
number is 5 (=1+2+2). His rejection number is 4 (=2+2) as d1’s size counts towards it
but s3’s does not. Analogously, s1’s guarantee and rejection numbers are respectively 6
(=1+2+2+1) and 3 (=2+1). Notice that s1’s rejection number is smaller than d2’s despite
the latter having a higher priority. This is due to s1’s smaller size and the fact that d2 contests
o1 as a subsequent choice, hence his size does not count towards s1’s rejection number. Finally,
s2’s guarantee number is 7 (=1+2+2+1+1) and his rejection number, which takes the sizes
of d1 and s1 into account, is 4 (=2+1+1).

o1 gives s3 a guarantee as his guarantee number is 1 and qo1 = 2. A check mark is
consequently displayed in the fifth column. o1 on the other hand rejects d2 since the latter’s
rejection number is larger than the quota (Condition (ii) in Lemma 5), resulting in the fifth
column displaying a cross and the sixth column displaying “El.”. The pair (d2, o1) is eliminated
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Step 1
o1 Pref. G R (2) El. o2 Pref. G R (1) El. o3 Pref. G R (2) El.

s3 2 1 1 3 s1 3 1 1 3 s3 3 1 1 3 El.

d1 T 3 2 s2 2 2 1 d1 2 3 2

d2 U 5 4 7 El. d2 U 4 2 7 El. d2 T 5 2

s1 T 6 3 s3 T 5 1 s1 2 6 3

s2 3 7 4 7 El. d1 3 7 3 7 El. s2 T 7 3

Step 2
o1 Pref. G R (2) El. o2 Pref. G R (1) El. o3 Pref. G R (2) El.

s3 2 1 1 3 s1 3 1 1 3 d1 2 2 2 3

d1 T 3 2 s2 2 2 1 d2 T 4 2

s1 T 4 3 s3 T 3 1 s1 2 5 3 7 El.

s2 T 6 3 7 El.

Step 3
o1 Pref. G R (2) El. o2 Pref. G R (1) El. o3 Pref. G R (2) El.

s3 2 1 1 3 s1 2 1 1 3 d1 2 2 2 3

d1 T 3 2 s2 T 2 1 d2 T 4 2

s1 T 4 3 s3 T 3 2 7 El.

Step 4
o1 Pref. G R (2) El. o2 Pref. G R (1) El. o3 Pref. G R (2) El.

s3 T 1 1 3 s1 2 1 1 3 d1 2 2 2 3

d1 T 3 3 7 El. s2 T 2 1 d2 T 4 2

s1 T 4 4

Step 5
o1 Pref. G R (2) El. o2 Pref. G R (1) El. o3 Pref. G R (2) El.

s3 T 1 1 3 s1 2 1 1 3 El. d1 T 2 2 3

s1 T 2 4 3 s2 T 2 1 d2 T 4 4 7 El.

Step 6
o1 Pref. G R (2) El. o2 Pref. G R (1) El. o3 Pref. G R (2) El.

s3 T 1 1 3 s2 T 1 1 3 d1 T 2 2 3

s1 T 2 4 3

Table 3: TDBU algorithm on Example 3.
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and will not enter Step 2. Note that the elimination would have taken place even without
the rejection because o1 is unacceptable to d2. s1 and s2 both have a rejection number above
the quota. o1 does not reject s1 as the pair does not satisfy Condition (iii) of Lemma 5. The
first part of Condition (iii) is not satisfied as s1 is the only single-unit agent contesting o1

as his top choice and the second part is violated by the presence of s3 who contests o1 as a
subsequent choice and has a rejection number smaller than the quota. The rationale for o1

not rejecting s1 is that, should o1 become s3’s top choice, d1 would be rejected and a unit
would become available to s1. The ability to allow agents to continue contesting an object
despite having a rejection number above the quota is a key difference between Top-Down
Bottom-Up and Deferred Acceptance. In the latter, o1 rejects s1, which ultimately creates a
blocking pair. In the former, an object only rejects an agent when it can be established that
the pair is not an element of any stable matching. This happens to s2, who is rejected by
o1. The pair satisfies the first part of Condition (iii) due to the presence of s1. The rationale
for the rejection is that if o1 becomes s3’s top choice, s1 takes advantage of the unit that has
become available, not s2. The fifth and sixth columns respectively display a cross and “El.”.

The second panel is devoted to o2. Guarantee and rejection numbers are calculated in the
same way. s1 receives a guarantee as his guarantee number is equal to the quota. The double-
unit agents are naturally rejected since o2 only has one unit available. In the third panel, o3
gives s3 a guarantee. The pair is nevertheless eliminated as s3 also receives a guarantee from
o1, which he prefers. s1 and s2 both have a rejection number above the quota. The presence
of s3 implies that they do not satisfy the second part of Condition (iii) of Lemma 5. s1 does
not satisfy the first part as the only single-unit agent with a higher priority, s3, contests o3

as a subsequent choice. As s1 also contests o3 as a subsequent choice, o3 does not reject s2

either.
Overall, seven agent-object pairs are eliminated in Step 1. s1 stops contesting the null

object as he has received a guarantee from o3. s2 stops contesting o1 as the latter has rejected
him. s3 has received a guarantee from his second choice, o1, and stops contesting his last
two, o3 and ∅, as a result. d1 has been rejected by o2 and stops contesting it and d2 stops
contesting both o1 and o2 for the same reason. We obtain X2 by removing these seven pairs
from X1 ≡ A×O, that is

X2 = (A×O) \ {(s1, ∅), (s2, o1), (s3, o3), (s3, ∅), (d1, o2), (d2, o1), (d2, o2)}.

Subsequent Steps
Neither o1 nor o2 gives any new guarantee or makes any new rejection in Step 2. The

guarantee number of d1 for o3 has however fallen to 2 as s3 no longer contests that object. o3
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gives d1 a guarantee as a result, which means that the latter will not contest the null object
in Step 3. The elimination of the pair (s3, o3) has important consequences for s1 and s2. The
latter now satisfy the second part of Condition (iii) as they are the only single-unit agents
to contest o3 while the difference between their rejection number and the quota is 1. Both
agents are rejected as a result. The rationale for these rejections is that o3’s two units are
assigned to one of d1 or d2 in any stable matching. Three additional agent-object pairs are
eliminated in Step 2 so that ten remain:

X3 = {(s1, o1), (s1, o2), (s2, o2), (s2, ∅), (s3, o1), (s3, o2), (d1, o1), (d1, o3), (d2, o3), (d2, ∅)}.

This illustrates the importance of the TDBU algorithm’s Bottom-Up parts. o1 gave s3 a
guarantee in Step 1, which allows the latter to stop contesting o3. This in turn allows o3 to
reject s1 and s2. If the TDBU algorithm only consisted of its Top-Down part, it would end
in the next step as it would not have any more agent-object pair to eliminate.

In Step 3, o2 has become s2’s top choice after he was rejected by o3. As s2’s rejection
number for o2 is equal to the quota, o2 rejects s3 by the first part of Condition (iii). This is
the only agent-object pair eliminated in this step. In turn, o1 is s3’s top choice in Step 4 as
the latter was rejected by o2. d1’s rejection number for that object rises to 3 > 2 = qo1 as a
result, leading to a rejection. Then

X5 = {(s1, o1), (s1, o2), (s2, o2), (s2, ∅), (s3, o1), (d1, o3), (d2, o3), (d2, ∅)}.

In Step 5, d1 has joined the envy set of s1 for o1 – that is E(s1,o1)(X
5) = {d1} – as

o1 ≻d1 o3 = od1(X
5) and d1 ◃o1 s1. d1’s size therefore continues to count towards s1’s rejection

number for o1, which remains 4. In contrast, d1’s size no longer counts towards s1’s guarantee
number for o1, which falls to qo1 = 2 as a result. Then o1 gives s1 a guarantee and consequently
s1 stops contesting o2. On the other hand, d2’s rejection number for o3 is now 4 as a result of
o3 becoming d1’s top choice so o3 rejects d2. In Step 6, s2 has risen to the top of o2’s priority
list (as s1 no longer contests that object). Therefore, s2 receives a guarantee abd stops
contesting the null. Step 7 is not displayed as no additional agent-object pair is eliminated.
The algorithm ends and yields

φ(A×O) = X8 = X7 = {(s1, o1), (s2, o2), (s3, o1), (d1, o3), (d2, ∅)}.

As each agent contests exactly one object, the above set of pairs is a matching, hence µ(φ(A×
O)) = φ(A×O). In addition, that matching is feasible. which by Proposition 4 means that it
is the only stable matching in this market. This is consistent with our findings from Section

28



2.3.

4 Undominated Stable Matching
The Top-Down Bottom-Up algorithm allows finding a matching µ(φ(A × O)), which is the
optimal stable matching if it is feasible (Proposition 4). In this section, we study the case
where µ(φ(A × O)) is not feasible. The Undominated Stable Matching (USM) algorithm
starts with the set of all agent-object pairs X1 ≡ A × O and runs the TDBU algorithm to
calculate φ(A × O). If that set’s top matching is not feasible, it serves as a starting point
towards a search for an undominated stable matching. The USM algorithm protects agent-
object pairs one at a time and uses the TDBU algorithm in between in order to narrow
down the search to stable matchings that contain all protected pairs. This continues until
either a stable matching is found, or it can be established that there does not exist any
stable matching containing all the protected pairs. In the former case, the matching found
is an undominated stable matching as any other stable matching makes at least one of the
agents involved in a protected pair worse-off. In the latter case, the algorithm backtracks
and eliminates the last pair it has protected. If there is no such pair, the algorithm ends and
reports that the set of stable matchings is empty.

4.1 Bottlenecks, Protections and Excess Supply

We begin by introducing concepts that are key to determining when our algorithm protects
a new agent-object pair, backtracks or ends. We build upon these rules in Section 4.2 to
formally introduce the Undominated Stable Matching (USM) algorithm. We call a complete
set of agent-object pairs irreducible if the TDBU algorithm does not change it. We denote
the set of irreducible sets of agent-object pairs by I. Formally, I ≡ {X ∈ X | φ(X) = X}.
For any X ∈ X, φ(X) is by construction irreducible if and only if it is complete. In each
Round, the USM algorithm makes use of the TDBU algorithm to obtain either the empty
set or an irreducible set of agent-object pairs. The empty set trivially does not include
any stable matching, therefore the USM algorithm has to backtrack if this is the case. In
this section, given an irreducible set of agent-object pairs, we determine which pairs are
eligible to be protected. We also derive conditions under which it can be established that an
irreducible set of agent-object pairs has a stable top matching or does not include any stable
matching. These conditions will guide the USM algorithm, which will end in the former case
and backtrack in the latter. If neither condition is satisfied, it protects an additional pair.

Irreducible sets of agent-object pairs have a large amount of structure, which will prove
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useful throughout our analysis. The next three results detail the properties of these sets.

Lemma 6. For any X ∈ I and any o ∈ O, there exists at most one agent a ∈ Ao(X) such
that E(a,o)(X) ̸= ∅. Furthermore, a ∈ S and E(a,o)(X) ⊆ D.

Lemma 6 derives almost directly from Condition (i) of Lemma 5. If an agent has a
nonempty envy set for a given object at X, then the object rejects him unless he is a single-
unit agent, the envy set contains exclusively double-unit agents and he has a higher priority
than all other single-unit agents with a nonempty envy set for the same object. These
conditions hold whenever the TDBU algorithm ends, hence they hold at any irreducible set
of agent-object pairs. An immediate consequence of Lemma 6 is that at the top matching of
an irreducible set of pairs, an agent may only envy another agent of smaller size.

Corollary 1 (to Lemma 6). For any X ∈ I, µ(X) is size-consistent.

Our last result on irreducible sets of pairs relates to feasibility. It shows that the top
matching of an irreducible set of pairs violates feasibility by at most one unit per object and
only in a specific case.

Lemma 7. If
∑

a∈Ao(X) wa > qo for some o ∈ O, then
∑

a∈Ao(X) wa = qo + 1 and there exist
d ∈ Do(X), s ∈ So(X) and s′ ∈ So(X) \ So(X) such that R(d,o)(X) = qo and s′ ◃o d ◃o s.

Lemma 7 constitutes a rather intuitive result. In every step of the TDBU algorithm and
for every object o, at most one single-unit agent with a rejection number larger than or equal
to the quota continues to contest o as his top choice (first part of Condition (iii)). This
is only possible when a single-unit agent with a rejection number strictly smaller than the
quota contests o as a subsequent choice. These conditions are then met when the TDBU
algorithm ends. Lemma 7 allows introducing an important concept.

Definition 2. Given X ∈ I, a bottleneck is a pair of agent-object pairs ((d, o), (s, o)) with
o ∈ O, d ∈ Do(X) and s ∈ So(X) such that R(d,o)(X) = qo and d ◃o s.

We denote the set of pairs that involve a double-unit agent and appear in a bottleneck of
X by

B(X) ≡ {(d, o) ∈ D ×O | d ∈ Do(X),R(d,o)(X) = qo and
∑

a∈Ao(X)

wa = qo + 1}.

The next result follows directly from Lemma 7 and Definition 2.

Corollary 2 (to Lemma 7). For any X ∈ I and any o ∈ O, there exist d ∈ D and s ∈ S

such that ((d, o), (s, o)) constitutes a bottleneck of X if and only if
∑

a∈Ao(X) wa > qo.
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Bottlenecks are what prevent the TDBU algorithm from moving forward because both
(d, o) and (s, o) may be an element of a stable matching, but keeping both of them violates
the quota of o. The number of bottlenecks in X, |B(X)|, is then equal to the number of
objects whose capacity is violated and to the number of units that would need to be created
in order for µ(X) to be feasible. An immediate consequence is that µ(X) is feasible if and
only if B(X) = ∅.15

While µ(φ(A × O)) is 1-bounded, size-consistent and non-wasteful (Proposition 4), this
may not be true for all irreducible sets of agent-object pairs, therefore the top matchings
of such set may be feasible but not stable. A similar concept to bottlenecks is useful to
determine cases where an irreducible set of pairs does not include any stable matching.

Definition 3. Given X ∈ I, a phantom bottleneck is a pair (d, o) ∈ Do(X)×O such that
R(d,o)(X) = qo, for any s ∈ S such that d◃o s, os(X) ≻s o and there exists s′ ∈ So(X)\So(X)

with s′ ◃o d.

We denote the set of pairs between a double-unit agent and his top choice involved in
either a bottleneck or a phantom bottleneck of X ∈ I by

B∗(X) ≡ {(d, o) ∈ D ×O | d ∈ Do(X), R(d,o)(X) = qo and ∃s ∈ Ŝ(d,o)(X) \ So(X)}.

A phantom bottleneck resembles a bottleneck in many ways: the last two units of the object
are assigned to a double-unit agent and there is a single-unit agent with a higher priority who
contests o as a subsequent choice. Should there be a single-unit agent s with a lower priority
than d contesting o as his top choice, ((d, o), (s, o)) would constitute a bottleneck. There just
happens not to be any such agent. One can therefore think of a phantom bottleneck as one
that involves a “phantom” single-unit agent. Phantom bottlenecks do not cause any problem
when it comes to feasibility since the sizes of agents whose top choice is o add up to exactly
qo. They however matter when it comes to determining whether or not X includes any stable
matching.

Consider again X ∈ I and suppose that its top matching µ(X) is not feasible. Then
B(X) is nonempty by Lemma 7 and so is B∗(X) since B(X) ⊆ B∗(X) by definition. Let
(d, o) ∈ B∗(X) and suppose we want to protect (d, o), that is we want to restrict our
attention to stable matchings that contain (d, o). Letting µ ∈ S be any such matching (i.e.

15Biró and McDermid (2014) show that a polynomial-time solvable algorithm exists in this model that finds
a matching that is stable if quotas are allowed to vary by at most one unit. As µ(φ(A×O)) is size-consistent,
1-bounded and non-wasteful (Proposition 4), Corollary 1 implies that the TDBU algorithm constitutes such
approximation: µ(φ(A×O)) is stable in the market where the objects involved in a bottleneck each have one
extra unit of capacity. The algorithm proposed by Dean, Goemans, and Immorlica (2006) possesses the same
properties, however it does not produce the same matching as the extra units benefit double-unit agents.
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(d, o) ∈ µ), we can identify agent-object pairs that are not an element of µ. By definition, d
contests o as his top choice and his rejection number is qo. As X is irreducible, E(d,o)(X) is
empty. Therefore

R(d,o)(X) = wd +
∑

a∈Â(d,o)(X)∩Ao(X)

wa = qo.

By size-consistency, all agents who have a higher priority than d and contest o as their top
choice are matched to o at µ. All pairs involving these agents and their less preferred objects
can be eliminated as a result. Agents who contest o as a subsequent choice and have a higher
priority than d cannot be matched to o at µ as this would violate feasibility. They cannot
either be matched at µ to an object they rank below o as they would envy d, violating size-
consistency. All pairs involving these agents and objects they like weakly less than o can be
eliminated as a result. We formalize this below.

Definition 4. The protection set of (d, o) ∈ B∗(X) at X ∈ I is

P(d,o)(X) ≡ {(a, o′) ∈ X | a Do d, o ≽a o
′ and oa(X) ≻a o

′}

Lemma 8. For any X ∈ I, any pair (d, o) ∈ B∗(X) and any stable matching µ ∈ S,
(d, o) ∈ µ ⊆ X implies µ ⊆ X \ P(d,o)(X).

The protection set of (d, o) in X contains agent-object pairs that are not an element of
any stable matching included in X that contains (d, o). These pairs can be eliminated to
obtain X \ P(d,o)(X), which includes all stable matchings that are a subset of X and contain
(d, o). That set is not necessarily irreducible and can enter the TDBU algorithm in order to
further reduce the set of agent-object pairs to consider. By Proposition 3, φ(X \ P(d,o)(X))

includes all stable matchings that contain (d, o) and are a subset of X.
A particularly interesting case occurs if (d, o) ∈ B(X), that is if there exists a bottleneck

((d, o), (s, o)) at X. By definition, (s, o) is not an element of (d, o)’s protection set at X,
however, when X \ P(d,o)(X) enters the TDBU algorithm, that pair is eliminated in the first
step. The reason is that all agents with a higher priority than d who contest o at X \P(d,o)(X)

contest it as their top choice. As R(d,o)(X \ P(d,o)(X)) = qo, R(s,o)(X \ P(d,o)(X)) > qo and
there does not exist any single-unit agent who contests o as a subsequent choice and has a
rejection number lower than the quota. (s, o) satisfies Condition (iii) of Lemma 5, as a result
o rejects s at X \ P(d,o)(X).

If (d, o) ∈ B∗(X) \ B(X), that is if (d, o) constitutes a phantom bottleneck of X, the
absence of any agent contesting o as a subsequent choice at φ(X \ P(d,o)(X)) means that
(d, o) no longer constitutes a phantom bottleneck of that new set of agent-object pairs.
Proposition 5 summarizes the properties of φ(X \ P(d,o)(X)).
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Proposition 5. For any X ∈ I, any pair (d, o) ∈ B∗(X) and any stable matching µ ∈ S,
(d, o) ∈ µ ⊆ X implies µ ⊆ φ(X \ P(d,o)(X)). Further, there does not exist any d′ ∈ D such
that (d, o) ∈ B∗(φ(X \ P(d,o)(X))).

The first part of the statement derives directly from Lemma 8 and Proposition 3: X \
P(d,o)(X) includes all stable matchings included in X that contain (d, o) and φ(X \P(d,o)(X))

includes all stable matchings included in X \ P(d,o)(X). The second part of the statement
comes from the fact that all agents who contest o at φ(X \ P(d,o)(X)) do so as their top
choice, thus making it impossible for o to be involved in a bottleneck or phantom bottleneck
by Definitions 2 and 3.

Proposition 5 shows that it is possible to narrow down the search for a stable matching
by focusing on those stable matchings that contain specific agent-object pairs. The USM
algorithm does exactly this, protecting one pair at a time until either a stable matching is
found or it can be established that the set of pairs found does not include any stable matching.
Eliminating pairs in a protection set means that some agents stop contesting objects without
having a guarantee for an object they prefer. As a result, an agent may be rejected by all
the objects he contests throughout the TDBU algorithm. Recall that when this occurs, the
TDBU algorithm ends and returns the empty set. In that case, it can trivially be concluded
that the set of pairs encountered does not include any stable matching. Otherwise, the USM
algorithm considers an irreducible set of pairs (recall that by definition the empty set is not
irreducible as it is not complete). We now derive conditions under which it can be established
that this set of pairs has a stable top matching or does not include any stable matching.

Given an irreducible set of agent-object pairs X ∈ I and a pair (a, o) ∈ X, we define the
size-adjusted magnitude of a’s claim to o at µ(X), denoted M(a,o)(X), to be the largest
claim that a has to o, adjusted to his size. That is, M(a,o)(X) = 0 if a does not have a
wa-unit claim to o at µ(X) and M(a,o)(X) = n > 0 if a has a n + (wa − 1)-unit claim to o

but does not have a n+ wa-unit claim to o at µ(X). Formally,

M(a,o)(X) ≡

{
max{0, qo − (wa − 1)−

∑
a′∈Â(a,o)(X)∩Ao(X) wa′} if o ≻a oa(X)

0 otherwise.

The relevance of M(a,o)(X) is that (a, o) constitutes a blocking pair of µ(X) if and only if
M(a,o)(X) > 0. In order for that blocking pair to disappear, at least M(a,o)(X) units of o must
be assigned to agents with a higher priority than a. We define the largest size-adjusted
claim to o, denoted, Lo(X), to be the one with the largest size-adjusted magnitude:

Lo(X) ≡ max
a∈A

M(a,o)(X).
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We denote the sum of all objects’ largest size-adjusted claims by L(X) ≡
∑

o∈O Lo(X). The
properties of largest size-adjusted claims are detailed in the following Lemma.

Lemma 9. For any X ∈ I, µ(X) does not have any blocking pair if and only if L(X) = 0.
For every o ∈ O, Lo(X) > 0 implies qo −

∑
a∈Ao(µ(X))wa ≥ Lo(X).

Lemma 9 outlines the importance of Lo(X) when it comes to finding stable matchings
included in X. The first part of the statement comes from the fact that Lo(X) > 0 implies
that some agent a has a wa-unit claim to o at µ(X) but Lo(X) = 0 implies that this is not
the case. Therefore, calculating Lo(X) is enough to determine whether or not µ(X) contains
any blocking pair. Additionally, this result implies that for any µ ∈ S ∩ 2X , that is for any
stable matching included in X,

∑
o∈O Lo(µ) = 0. Therefore, at least Lo(X) units of o need

to be assigned to agents with a higher priority than the ones to whom they are assigned at
µ(X) (if any). The second part of the statement derives from Lemma 6 and the fact that at
most one unit of o is assigned to an agent who is envied at µ(X). It implies that all claims
at µ(X) involves unassigned units. Thus, a matching µ ∈ S∩2X is such that for any object o
with Lo(X) > 0, the number of units assigned at µ is at least Lo(X) over the number of units
assigned at µ(X). Mathematically,

∑
a∈A(µ) wa −

∑
a∈A(µ(X))wa ≥ Lo(X). If that condition

is not met, agents who have a claim to unassigned units at µ(X) also do at µ and the latter
is not stable.

For any µ ∈ S ∩ 2X , the total size of agents matched to objects with a positive largest
size-adjusted claim at µ is larger than at µ(X). As the total size of all agents is fixed
at
∑

a∈Awa = 2|D| + |S|, the total size of agents matched to objects that have a largest
size-adjusted claim of zero (o such that Lo(X) = 0) is smaller. Mathematically,

∑
o∈{o′|Lo′ (X)>0}

 ∑
a∈Ao(µ)

wa

−

 ∑
a∈Ao(X)

wa

 =
∑

o∈{o′|Lo′ (X)=0}

 ∑
a∈Ao(X)

wa

−

 ∑
a∈Ao(µ)

wa

 > 0.

Consider an object o ∈ O such that Lo(X) = 0. Intuitively, it seems that reducing the
total size of agents who contest o as their top choice would increase Lo(X), in which case
it is impossible to reach µ ⊆ X such that L(µ) = 0 if L(X) > 0. However, if the object
is involved in a bottleneck or phantom bottleneck, the total size of agents matched to that
object may decrease by one unit without affecting its largest size-adjusted claim. To see this,
suppose that o ∈ O is involved in a bottleneck of X, that is there exists d ∈ D such that
(d, o) ∈ B(X). By definition, the total size of agents contesting o at X as their top choice
is
∑

a∈Ao(X) wa = qo + 1. By Lemma 7, the agent with the lowest priority is a single-unit
agent and by Lemma 6 no agent other than him is envied at µ(X). If that agent stops
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contesting o, the total size of agents contesting o as their top choice falls to qo but no agent
has a claim to o. Consider next an object o that is involved in a phantom bottleneck of X.
That is, there exists d ∈ D such that (d, o) ∈ B∗(X) \ B(X). Then

∑
a∈Ao(X) wa = qo and

R(d,o)(X) = qo. Additionally, there exists s ∈ So(X) \ So(X) but there does not exist s′ ∈ S

such that o ≻s′ os′(X). Consider a matching µ ⊆ X such that s is matched to o but d is
not and all other agents matched to o at µ are those who contest it at X as their top choice.
Formally, Ao(µ) = (Ao(X) \ {d})∪ {s}. Then the total size of agents matched to o is qo − 1,
however no single-unit agent has a claim to the unassigned unit of o, therefore Lo(µ) = 0.

The above considerations imply that X may include a stable matching even when L(X) >

0, however there needs to be enough objects involved in a bottleneck or a phantom bottleneck
in order to increase the total size of agents matched to objects with a positive largest size-
adjusted claim. Lemma 10 formalizes these conditions.

Lemma 10. Let X ∈ I, µ ∈ S∩2X , and o ∈ O. If there exists d ∈ D such that (d, o) ∈ B∗(X),
then Lo(X) = 0 and ∑

a∈Ao(µ)

wa −
∑

a∈Ao(X)

wa ≥ Lo(X)− 1 = −1.

Otherwise, ∑
a∈Ao(µ)

wa −
∑

a∈Ao(X)

wa ≥ Lo(X).

Corollary 3 (to Lemma 10). Given X ∈ I, if there exists o ∈ O such that |Ao(X)|−|Ao(X)| <
Lo(X), then S ∩ 2X = ∅.

Lemma 10 shows that the total size of agents matched to an object may decrease by at
most one unit if the object is involved in a bottleneck or phantom bottleneck and may not
decrease otherwise. In fact, if an object o has an positive largest size-adjusted claim, the
total size of agents matched to it must increase by at least Lo(X). This requires the presence
of enough agents who contest o as a subsequent choice, hence Corollary 3 is an immediate
consequence of Lemma 10. We finally make use of these result to determine when X has a
stable top matching or does not include any stable matching.

Definition 5. The excess supply of o ∈ O at X ∈ I is

Eo(X) ≡


−1 if there exists d ∈ D such that (d, o) ∈ B∗(X)

Lo(X) if (d, o) /∈ B∗(X) for all d ∈ D and |Ao(X)| − |Ao(X)| ≥ Lo(X)

∞ if |Ao(X)| − |Ao(X)| < Lo(X).

We denote the sum of all objects’ excess supply at X by E(X) ≡
∑

o∈O Eo(X). The term
“excess supply” refers to units that are unassigned at X and cause µ(X) to have blocking
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Algorithm 3: Undominated Stable Matching (USM)

Initialization:
Given a market and an index of agent-object pairs θ, let X1 ≡ A×O and Z1 ≡ ∅.
Round k ≥ 1:
Use the TDBU algorithm to calculate φ(Xk).
Case 1: L(φ(Xk)) = |B(φ(Xk))| = 0.
Let µ∗

θ ≡ µ(φ(Xk)).
Case 2: L(φ(Xk)) + |B(φ(Xk))| > 0 and E(φ(Xk)) ≤ 0.
Let zk be the element of B∗(φ(Xk)) with the smallest index θ. Construct Xk+1 by
protecting zk at φ(Xk) and Zk+1 by adding zk to Zk and continue to Round k + 1.
Case 3: φ(Xk) = ∅ or E(φ(Xk)) > 0.
If Zk = ∅, let µ∗

θ ≡ ∅. Otherwise, let zi be the last pair that was added to Zk.
Construct Xk+1 by eliminating zi from Xi, let Zk+1 ≡ Zi and continue to Round
k + 1.

pair. If an object has more such units than the total size of the agents who contest it as a
subsequent choice, its excess supply is ∞ as it is involved in a blocking pair in all matchings
included in X. If on the other hand the object is involved in a bottleneck or a phantom
bottleneck, its excess supply is −1 as the total size of agents contesting it as its top choice
can decrease by one unit without creating a blocking pair. We are now in a position to
formally state the conditions under which it can be established that an irreducible set of
agent-object pairs has a stable top matching or does not include any stable matching.

Proposition 6. µ(X) ∈ S if and only if L(X) = |B(X)| = 0. If E(X) > 0, then S∩2X = ∅.

4.2 Undominated Stable Matching Algorithm

The USM algorithm is is presented in Algorithm 3. The full set of agent-object pairs A×O

enters the algorithm. The latter returns µ∗
θ, which is either the empty set or a matching. In

Round 1, it uses the TDBU algorithm to calculate φ(A × O). By Proposition 4, µ(φ(A ×
O)) is the optimal stable matching if and only if B(X) = ∅.16 Otherwise, an element of

16This is consistent with Proposition 6 as µ(φ(A×O)) is 1-bounded, size-consistent and non-wasteful and
therefore does not have any blocking pair, meaning by Lemma 9 that L(X) = 0.
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B∗(φ(A×O)) is protected. B∗(X) may contain multiple elements, in which case the one with
the lowest index is protected. This index is a function θ : D×O → {1, 2, . . . , |D×O|} such
that (d, o) ̸= (d′, o′) implies θ((d, o)) ̸= θ((d′, o′)). In practice, θ could be determined through
a lottery or reflect a general priority over double-unit agents. As we show in Theorem 1,
the index does not impact the outcome if an optimal stable matching exists or if the set of
stable matchings is empty, however it may determine which undominated stable matching is
selected if multiple ones exist. We label the protected agent-object pair z1. The set of pairs
that enters Round 2 is calculated by eliminating the protection set of z1 from φ(A × O):
X2 ≡ φ(A × O) \ Pz1(φ(X1)). We also let Z2 ≡ {z1} be the set of pairs that have been
protected thus far. (Z1 = ∅ since no pair is protected at the beginning of the algorithm.)

In general, in Round k, a set of pairs Xk enters, a subset Zk of which has been protected.
The TDBU algorithm is used to calculate φ(Xk), a set that by construction is irreducible
if and only if it is nonempty. Depending on the properties of φ(Xk), the algorithm finds
itself in one of three possible cases. Case 1 is the simplest one, it occurs when L(φ(Xk)) =

|B(φ(Xk))| = 0. By Proposition 6, µ(φ(Xk)) is stable. The algorithm ends as it has found
a stable matching. In fact, it has found an undominated stable matching because all agent-
object pairs that are not an element of φ(Xk) are not an element of any stable matching that
includes Zk. Therefore, any other stable matching makes at least one of the agents involved in
a protected pair worse-off. Case 2 occurs when L(φ(Xk))+|B(φ(Xk))| > 0 but E(φ(Xk)) ≤ 0.
By Proposition 6, µ(φ(Xk)) is not stable, however the second part of the statement does not
apply, therefore it may be possible to find a stable matching by eliminating more agent-
object pairs. The algorithm protects the element of B∗(φ(X)) with the lowest index. Such
pair, which we label zk, exists since |B(φ(Xk))| > 0 directly implies B∗(φ(X)) ̸= ∅ and
the combination of L(φ(Xk)) > 0 and E(φ(Xk)) ≤ 0 also implies B∗(φ(X)) ̸= ∅. The
algorithm generates Zk+1 by adding the newly protected pair zk to Zk and Xk+1 by removing
its protection set Pzk(φ(Xk)) from φ(Xk). By Lemma 8, Xk+1 includes all stable matchings
that themselves include Zk+1. Case 3 arises when neither of the above two conditions is
satisfied, which occurs when either φ(Xk) = ∅ or E(φ(Xk)) > 0.17 In that case, φ(Xk) does
not include any stable matching. This is trivial when φ(Xk) = ∅ and implied by Proposition
6 when E(φ(Xk)) > 0. It implies that there does not exist any stable matching that includes
Zk. In turn, if Zk = ∅, this means that there does not exist any stable matching in this
market. The algorithm ends and produces the empty set to indicate that fact. If Zk ̸= ∅,
the algorithm backtracks and eliminates the last protected pair, which we label zi. That
pair is not an element of any stable matching that includes Zi = Zk \ {zi}. (Zi = Zk \ {zi}

17Cases 1 and 2 implicitly imply that φ(Xk) ̸= ∅ since L(·), B(·) and E(·) are only defined for irreducible
sets of agent-object pairs, which are complete (hence nonempty) by definition.
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since zi was protected in Round i.) Xk+1 and Zk+1 are obtained by removing zi from Xk,
respectively Zk (then Zk+1 = Zi) and the algorithm continues to Round k+1. Xk+1 includes
all stable matchings that include Zi. The USM algorithm goes on until it either finds an
undominated stable matching or establishes that the set of stable matchings is empty. This
result is formalized below.

Theorem 1. For any index θ, µ∗
θ is an undominated stable matching if the set of stable

matchings is nonempty and µ∗
θ = ∅ otherwise.

An immediate implication of Theorem 1 is that the index θ does not affect its outcome if
the set of stable matchings is empty or contains an optimal stable matching. In the former
case, the algorithm produces an empty set and in the latter case, it finds the optimal stable
matching since all other stable matchings are dominated. The index determines what the
algorithm tries first and may for that reason impact its running time. If multiple undominated
stable matchings exist, the algorithm stops as soon as one is found, and which one that is
may depend on the index.

4.3 d-Undominated Stable Matching

The USM algorithm is constructed in such a way that only pairs involving a double-unit
agent are eligible for protection. In the case where multiple undominated stable matchings
exist, this may have an incidence on the outcome. Proposition 7 shows that this construction
confers to the USM algorithm an additional property. We argue (Example 4) that this
property is desirable.

d-domination is a partial order on the set of matchings M. We say that matching µ

d-dominates matching µ′ if od(µ) ≽d od(µ
′) for all d ∈ D and there exists a ∈ A such that

oa(µ) ≻a oa(µ
′). In words, µ d-dominates µ′ if it makes all double-unit agents weakly better-

off and at least one agent strictly better-off. A stable matching µ ∈ S is a d-undominated
stable matching if there does not exist any stable matching µ′ ∈ S such that µ′ d-dominates
µ.

Proposition 7. For any index θ, µ∗
θ is a d-undominated stable matching if the set of stable

matchings is nonempty and µ∗
θ = ∅ otherwise.

d-domination constitutes a relaxation of domination as it only requires that double-unit
agents be made weakly worse-off. All d-undominated stable matchings are undominated but
the converse is not necessarily true, hence Proposition 7 strengthens Theorem 1. It derives
directly from the fact that protected pairs involve double-unit agents, therefore any stable
matching other than µ∗

θ (if the latter is a stable matching) makes at least one double-unit
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Round 1
X1 = A×O, Z1 = ∅

o1 Pref. G R (2) El. o2 Pref. G R (2) El.

s2 2 1 1 3 d1 2 2 2 3

d1 T 3 2 s2 T 3 1

s1 T 4 3 s1 2 4 2

φ(X1) = (A×O) \ {(s2, ∅), (d1, ∅)}

Round 2
X2 = {(s1, o1), (s1, o2), (s1, ∅), (s2, o2), (d1, o1)}

Z2 = {(d1, o1)}
o1 Pref. G R (2) El. o2 Pref. G R (2) El.

d1 T 2 2 3 s2 T 1 1 3

s1 T 3 3 7 El. s1 2 2 2 3

o1 Pref. G R (2) El. o2 Pref. G R (2) El.

d1 T 2 2 3 s2 T 1 1 3

s1 T 2 2 3

φ(X2) = {(s1, o2), (s2, o2), (d1, o1)}

Table 4: USM algorithm on Example 4.

agent worse-off. This feature of the USM algorithm may appear unfair at first sight, however
as we illustrate next it prevents awkward situations where a double-unit agent envies a single-
unit agent and the only reason why the matching is stable is that another single-unit agent
was made worse-off in the process.

Example 4 (Unequal USMs). There are two single-unit agents s1 and s2, one double-
unit agent d1 and two non-null objects o1 and o2. The preferences, priorities and quotas
are detailed below:

≻s1 : o1, o2, ∅ ≻d1 : o1, o2, ∅ ◃o1 : s2, d1, s1 qo1 = 2

≻s2 : o2, o1, ∅ ◃o2 : d1, s2, s1 qo2 = 2

The market presented in Example 4 has two stable matchings: µ ≡ {(s1, o2), (s2, o2),
(d1, o1)} and µ′ ≡ {(s1, o1), (s2, o1), (d1, o2)}. Neither matching dominates the other as s2

and d1 are better-off at µ while s1 is better-off at µ′. Table 4 displays the work of the USM
algorithm in this market. In the first round, the TDBU algorithm only eliminates (s2, ∅) and
(d1, ∅) since s2 and d1 receive a guarantee from their respective second choices. B(φ(X1)) =

B∗(φ(X1)) = {(d1, o1)} therefore (d1, o1) is protected no matter θ. The protection set of
(d1, o1) contains (d1, o2) and (s2, o1) (Definition 4). When φ(X1) enters the TDBU algorithm,
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o1 rejects s1 since the pair satisfies Condition (iii) of Lemma 5 as a result of s2 no longer
contesting o1. The TDBU algorithm yields φ(X2){(s1, o2), (s2, o2), (d1, o1)} as all agents
obtain a guarantee for their top choice. The USM algorithm stops at the end of Round 2
and yields µ∗

θ = µ.
The USM algorithm produces µ for any θ. The reason why it never produces µ′ is that

µ d-dominates it as od1(µ
′) ≻d1 od1(µ

′). We argue that missing µ′ is a virtue of the USM
algorithm because µ constitutes a more desirable solution. s1 has the lowest priority for both
objects, therefore it appears fair that s2 and d1 first be matched to the object they want and
that s1 then obtain whatever remains. Following that logic, s2 and d1 should be respectively
assigned one unit of o2 and two units of o1 and s1 should receive the remaining unit of o2,
leading to matching µ. µ′ is constructed by inefficiently matching s2 to o1 and d2 to o2. The
fact that s2 and d1 have different sizes benefits s1 because one unit of o1 remains available.

4.4 Examples

We use our examples from Section 2.3 in order to illustrate the USM algorithm. Example 3
has an optimal stable matching and we showed in Section 3.3 that the TDBU algorithm finds
it. An immediate consequence is that the USM algorithm finds it in its first round. Example
1 does not have any stable matching and we show in Section 4.4.1 that the USM algorithm
returns the empty set. In contrast, Example 2 has two undominated stable matchings and
we show in Section 4.4.2 that the USM algorithm returns either one of them, depending
on its index θ. In Section 4.4.3, we illustrate the depth-first search conducted by the USM
algorithm with two examples.

4.4.1 Example 1

Table 5 displays the computations of the USM algorithm on Example 1. As d1 is the only
double-unit agent, the index does not impact the outcome, therefore we consider any arbitrary
index θ. The USM algorithm lasts three rounds, which are displayed in Table 5. Round 1
begins by running the TDBU algorithm on X1 ≡ A×O. s1 and s2 each receive a guarantee
for their second choice so that (s1, ∅) and (s2, ∅) are eliminated. (d1, o2) is also eliminated
since d1 finds o2 unacceptable and o2 only has one unit available. o1 does not reject s1

despite the latter having a rejection number above the quota, because a unit of o1 would free
up should that object become s2’s top choice. The TDBU algorithm stops after two rounds
and yields φ(X1) = {(s1, o1), (s1, o2), (s2, o1), (s2, o2), (d1, o1), (d1, ∅)}. φ(X1) contains one
bottleneck: ((d1, o1), (s1, o1)) so X2 is constructed by protecting (d1, o1). The protection set
contains all pairs involving d1 and a less preferred object to o1 as well as all pairs involving
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Round 1
X1 = A×O, Z1 = ∅

o1 Pref. G R (2) El. o2 Pref. G R (1) El.

s2 2 1 1 3 s1 2 1 1 3

d1 T 3 2 s2 T 2 1

s1 T 4 3 d1 U 4 3 7 El.

o1 Pref. G R (2) El. o2 Pref. G R (1) El.

s2 2 1 1 3 s1 2 1 1 3

d1 T 3 2 s2 T 2 1

s1 T 4 3

φ(X1) = (A×O) \ {(s1, ∅), (s2, ∅), (d1, o2)}

Round 2
X2 = {(s1, o1), (s1, o2), (s2, o2), (d1, o1)}

Z2 = {(d1, o1)}
o1 Pref. G R (2) El. o2 Pref. G R (1) El.

d1 T 2 2 3 s1 2 1 1 3

s1 T 3 3 7 El. s2 T 2 1

o1 Pref. G R (2) El. o2 Pref. G R (1) El.

d1 T 2 2 3 s1 T 1 1 3

s2 T 2 2 7 El.

φ(X2) = ∅

Round 3
X3 = {(s1, o1), (s1, o2), (s2, o1), (s2, o2), (d1, ∅)}

Z3 = ∅
o1 Pref. G R (2) El. o2 Pref. G R (1) El.

s2 2 1 1 3 s1 2 1 1 3 El.

s1 T 2 3 3 s2 T 2 1

o1 Pref. G R (2) El. o2 Pref. G R (1) El.

s2 2 1 1 3 El. s2 T 1 1 3

s1 T 2 3 3

o1 Pref. G R (2) El. o2 Pref. G R (1) El.

s1 T 1 3 3 s2 T 1 1 3

φ(X3) = {(s1, o1), (s2, o2), (d1, ∅)}

Table 5: USM algorithm on Example 1.
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s2 and an object he ranks weakly below o1, therefore: P(d1,o1)(φ(X1)) = {(d1, ∅), (s2, o1)} and
X2 = {(s1, o1), (s1, o2), (s2, o2), (d1, o1)}. In Round 2, o1 rejects s1 in the first step of the
TDBU algorithm. This results from s2 no longer contesting o1, which implies that d1 is now
assigned both units of that object in any stable matching. s1 contests o2 as his top choice in
the second step of the TDBU algorithm and o2 rejects s2 as a consequence. As s2 no longer
contests any object, the TDBU algorithm ends and yields the empty set. We conclude that
there does not exist any stable matching that contains (d1, o1). X3 is constructed by removing
(d1, o1) from φ(X1) = φ(A×O), meaning that d1 only contests the null object. When that set
enters the TDBU algorithm, s1 and s2 receive a guarantee from their respective top choices,
resulting in each agent contesting exactly one object: φ(X3) = {(s1, o1), (s2, o2), (d1,∅)}. As
d1 ◃o1 s1, d1 has a 2-unit claim to o1 so Lo1(φ(X3)) = 1. As none of the agents contests o1 as
a subsequent choice, Eo1(φ(X3)) = ∞ and X3 does not include any stable matching.18 The
USM algorithm cannot backtrack since Z3 = ∅, therefore it stops and produces µ∗

θ = ∅.
This outcome was to be expected as we had established in Section 2.3 that this market does
not have any stable matching.

4.4.2 Example 2

As was shown in Section 2.3, Example 2 has two undominated stable matchings

µ ≡ {(s1, o1), (s2, o1), (d1, ∅), (d2, o2)} and µ′ ≡ {(s1, o2), (s2, o2), (d1, o1), (d2, ∅)}.

We consider an index θ is such that θ((d1, o1)) < θ((d2, o2)) and show that the USM algorithm
produces µ′. Table 6 details the computations. Irrespective of θ, Round 1 starts by running
the TDBU algorithm on A×O. d1 and d2 respectively find o2 and o1 unacceptable, therefore
(d1, o2) and (d2, o1) are eliminated (o2 and o1 also respectively reject d1 and d2). In contrast,
o2 and o1 give a guarantee to s1 and s2, respectively, as a result (s1, ∅) and (s2, ∅) are
eliminated. The TDBU algorithm ends after its second step as it does not eliminate any
additional pair. φ(X1) = φ(A × O) contains two bottlenecks: B(φ(X1)) = B∗(φ(X1)) =

{(d1, o1), (d2, o2)}. As θ((d1, o1)) < θ((d2, o2)), (d1, o1) is protected. The protection set is
P(d1,o1)(φ(X1)) = {(s2, o1), (d1, ∅)} and the search is now restricted to stable matchings that
contain (d1, o1).

Round 2 starts with

X2 = φ(X1) \ P(d1,o1)(φ(X1)) = {(s1, o2), (s2, o2), (d1, o1), (d2, o2), (d2, ∅)}
18As φ(X3) is itself a matching, this conclusion can be inferred directly from the fact that it is not stable

as (d1, o1) is a blocking pair.
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Round 1
X1 = A×O, Z1 = ∅

o1 Pref. G R (2) El. o2 Pref. G R (2) El.

s2 2 1 1 3 s1 2 1 1 3

d1 T 3 2 d2 T 3 2

s1 T 4 3 s2 T 4 3

d2 U 6 5 7 El. d1 U 6 5 7 El.

o1 Pref. G R (2) El. o2 Pref. G R (2) El.

s2 2 1 1 3 s1 2 1 1 3

d1 T 3 2 d2 T 3 2

s1 T 4 3 s2 T 4 3

φ(X1) = {(s1, o1), (s1, o2), (s2, o1),
(s2, o2), (d1, o1), (d1, ∅), (d2, o2), (d2, ∅)}

Round 2
X2 = {(s1, o1), (s1, o2), (s2, o2), (d1, o1), (d2, o2), (d2, ∅)}

Z2 = {(d1, o1)}
o1 Pref. G R (2) El. o2 Pref. G R (2) El.

d1 T 2 2 3 s1 2 1 1 3

s1 T 3 3 7 El. d2 T 3 2

s2 T 4 3

o1 Pref. G R (2) El. o2 Pref. G R (2) El.

d1 T 2 2 3 s1 T 1 1 3

d2 T 3 3 7 El.

s2 T 4 4

o1 Pref. G R (2) El. o2 Pref. G R (2) El.

d1 T 2 2 3 s1 T 1 1 3

s2 T 2 4 3

φ(X2) = {(s1, o2), (s2, o2), (d1, o1), (d2, ∅)}

Table 6: USM algorithm on Example 2 (θ(d1, o1) < θ(d2, o2)).

and Z2 = {(d1, o1)}. o1 rejects s1 in the first step of the TDBU algorithm as s2 no longer
contests that object. In the second step, o2 has become s1’s top choice, resulting in d2’s
rejection number rising to 3 > 2 = qo2 . o2 rejects d1. In the third step, s2’s guarantee
number for o2 has fallen to 2 = qo2 following d2’s rejection. (s2, ∅) is eliminated and the
TDBU algorithm yields φ(X2) = {(s1, o2), (s2, o2), (d1, o1), (d2, ∅)} = µ′. Since L(φ(X2)) =

|B(φ(X2))| = 0, the USM algorithm ends and produces µ∗
θ ≡ µ(φ(X2)) = φ(X2) = µ′.

Through an analogous reasoning, it is possible to verify that the USM algorithm produces µ

if θ(d1, o1) > θ(d2, o2).

43



4.4.3 Depth-First Search

Our last example does not arise from a specific market but presents a hypothetical depth-first
search that further illustrates the USM algorithm. Figure 1 displays a hypothetical depth-
first search where the USM algorithm finds an undominated stable matching after seventeen
rounds. The algorithm starts with some market and some index θ over pairs involving a
double-unit agent.

In Round 1, the TDBU algorithm runs over X1 = A×O and produces φ(X1). It is such
that B(φ(X1) ̸= ∅, therefore the agent-object pair with the lowest index θ in B∗(φ(X1)),
say z1, is protected. X2 is calculated by removing the protection set of z1 from φ(X1) and
Z2 is obtained by adding z1 to Z1. As Z1 = ∅, Z2 = {z1}. In Round 2, the TDBU algorithm
generates φ(X2) ∈ I. It is such that E(φ(X2)) ≤ 0 and L(X) + |B(X)| > 0 therefore the
algorithm constructs X3 and Z3 by protecting another pair z2. Round 3 works in an analogous
way, this time z3 is protected. Then Z4 = {z1, z2, z3}.

In Round 4, the TDBU algorithm produces φ(X4) and this time either φ(X4) = ∅ or
E(φ(X4)) > 0, meaning that X4 does not include any stable matching (S ∩ 2X4 = ∅). We in
turn infer that Z4 = {z1, z2.z3} is not a subset of any stable matching. The algorithm proceeds
to reject the last protected agent-object pair, in that case z3. X5 and Z5 are constructed by
removing z3 from φ(X3) and Z3, respectively.

In Rounds 5 and 6, the pairs z5 and z6 are protected so that Z7 = {z1, z2, z5, z6}. It is
found in Round 7 that X7 does not include any stable matching. The last protected pair, z6, is
rejected so that X8 = φ(X7)\{z6} and Z8 = {z1, z2, z5}. Again, running the TDBU algorithm
allows inferring that X8 does not include any stable matching. Then Z8 = Z6 = {z1, z2, z5}
is not a subset of any stable matching, hence X6 does not include any stable matching. The
algorithm goes back to the last set of agent-object pairs that could potentially include a stable
matching, φ(X5), and eliminates the last protected pair, z5. It follows that X9 = φ(X5)\{z5}
and Z9 = {z1, z2}.

The next two rounds are similar. In Round 9, it is found that {z1, z2} is not a subset of
any stable matching, hence X10 = X2 \ {z2} and Z10 = {z1}. In Round 10, it is established
that z1 is not an element of any stable matching so Z11 = ∅ and X11 = φ(X1) \ {z1}. The
algorithm is almost back to where it started, however it has established in the process that
none of the stable matchings contain z1.

Round 11 calculates φ(X11) and protects another agent-object pair, labeled z11. Note
that z11 could very well be one of the pairs that was previously eliminated, for example
it is possible that z11 = z2. z2 was eliminated because it is not an element of any stable
matching containing z1, however now that z1 has been eliminated it is again possible to
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φ(X1)

φ(X2) φ(X11)

φ(X3) φ(X10) φ(X12) φ(X13)

φ(X4) φ(X5) φ(X14)

φ(X6) φ(X9) φ(X15) φ(X16)

φ(X7) φ(X8) φ(X17)

z1 z1

z2 z2 z11 z11

z3 z3 z13

z5 z5 z14 z14

z6 z6 z16

Figure 1: Depth-First Search of the USM algorithm (USM found).

find a stable matching that contains z2. Round 12 establishes however that X12 does not
include any stable matching, hence z11 is not an element of any stable matching either. X13

is constructed by removing z11 from X11 and once again the set of protected agent-object
pairs is empty: Z13 = ∅.

Agent-object pairs z13 and z14 are protected in Rounds 13 and 14. z14 is subsequently
eliminated in Round 15 as either φ(X15) = ∅ or E(φ(X15) > 0. Another pair, z16, is protected
in Round 16 and, finally in Round 17, L(φ(X17)) = |B(φ(X17))| = 0. The algorithm ends
and yields the undominated stable matching µ∗

θ ≡ µ(φ(X17)).
Figure 2 presents a slightly different scenario. Rounds 1 to 16 are identical so that

Z17 = {z13, z16}. In contrast to the previous case, φ(X17) now either is the empty set or has a
positive excess supply. Then z16 is eliminated in Round 17: X18 = φ(X17) \ {z16} and Z18 =

{z13}. The same holds for φ(X18), hence z13 is eliminated in Round 18: X19 = φ(X13)\{z13}
and Z19 = ∅.

In Round 19, it is again established that φ(X19) = ∅ or E(φ(X19)) > 0 so X19 is does not
include any stable matching. Since Z19 = ∅, the algorithm ends and reports that the set of
stable matchings is empty. To see this, recall that φ(X1) includes all stable matchings and
observe that X19 = φ(X1) \ {z1, z11, z13}. As protecting any of z1, z11 or z13 is incompatible
with stability, these pairs are not an element of any stable matching. X19 consequently
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z1 z1

z2 z2 z11 z11

z3 z3 z13

z5 z5 z14 z14

z6 z6 z16

φ(X18)

z16

φ(X19)

z13

Figure 2: Depth-First Search of the USM algorithm (empty set of stable matchings).

includes all stable matchings. The fact that it does not include any stable matching implies
that there does not exist any stable matching. The algorithm ends and produces µ∗

θ = ∅.

5 Relaxing Stability
The USM algorithm finds an undominated stable matching whenever one exists. Addition-
ally, it has the double computational advantage to reduce the size of the market in poly-
nomial time in every round and to guarantee that the first stable matching it finds is not
dominated, thus allowing to find such solution without having to compute the whole set of
stable matchings. In applications where a stable matching exists with a high probability, the
USM algorithm is likely to constitute a satisfying solution. The experience of the National
Resident Matching Program (NRMP) – a stable matching has been found every year since
the program’s inception – suggests that this is the case in large markets where agents tend
to like the same objects and objects tend to assign a high priority to the same agents. In the
case where the set of stable matchings is empty however, the USM algorithm simply reports
that fact and does not provide any alternate solution. It consequently is unlikely to prove
successful in applications where the non-existence of stable matchings constitutes a common
occurrence.
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In this section, we return to our three properties – K-boundedness, size-consistency and
non-wastefulness – that characterize stability (Proposition 2) and consider relaxations of sta-
bility that involve any two of these properties. We show (Theorem 2) that for any nonnegative
integer K, there exists a market in which the set of feasible, K-bounded and non-wasteful
matchings is empty. Thus, any relaxation of stability that includes these two properties does
not guarantee existence and a market designer must choose between bounding the size of
claims and eliminating waste. We show on the other hand that a feasible, 1-bounded and
size-consistent matching as well as a feasible, size-consistent and non-wasteful matching exist
in any market. In Section 6, we build upon the latter result as well as the techniques devel-
oped in Sections 3 and 4 to propose a suitable relaxation of stability for applications where
eliminating waste is a priority.

5.1 Impossibility result

A direct consequence of the possible non-existence of stable matchings in this market (Propo-
sition 1) and our characterization result (Proposition 2) is that the set of feasible, K-bounded,
size-consistent and non-wasteful matchings may be empty. We strengthen this result by
showing that removing size-consistency as a requirement does not guarantee existence.

Theorem 2. For any nonnegative integer K, the set of feasible, K-bounded and non-wasteful
matchings may be empty.

In order to provide intuition for this result, we present an example below where any non-
wasteful matching has a 2-unit claim, proving that a 1-bounded and non-wasteful matching
may not exist. That example can be extended to cater for larger numbers (Example 7 in the
appendix) in order to prove the full theorem. The mechanism for the proof is the same as in
the simple case presented below.

Example 5 (No 1-bounded non-wasteful Matching). There are three single-unit agents
s1, ŝ1 and ŝ2, one double-unit agent d1 and two non-null objects o1 and o2. The prefer-
ences, priorities and quotas are

≻s1 : o1, o2, ∅ ≻ŝ1 : o2, o1, ∅ ◃o1 : ŝ1, ŝ2, d1, s1 qo1 = 2

≻d1 : o1, ∅, o2 ≻ŝ2 : o2, o1, ∅ ◃o2 : s1, ŝ1, ŝ2, d1 qo2 = 2

If d1 is matched to o1, then feasibility dictates that none of the single-unit agents be
matched to o1 and at least one of them be matched to the null object. If s1 is matched to
the null object, he has a 2-unit claim to o2 as he has the highest priority for that object. If
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either ŝ1 or ŝ2 is matched to the null object, he has a 2-unit claim to o1 as both units of that
object are assigned to d1 who has a lower priority. If d1 is matched to o2, he has a claim to
at least two unassigned units of the null object as the latter is available in enough units to
accommodate all agents. It follows that d1 is matched to the null object in any 1-bounded
and non-wasteful matching. In that case, d1 has a 2-unit claim to o1 unless at least one of ŝ1
or ŝ2 is matched to that object. That agent has a claim to an unassigned unit of o2 unless
the other two single-unit agents are matched to o2. The matching obtained is wasteful since
one unit of o1 is unassigned and s1 prefers o1 to o2. We conclude that there does not exist
any 1-bounded and non-wasteful matching in Example 5.

Theorem 2 sheds some light on the non-existence of stable matchings in markets with
sizes, which arises from a tension between two necessary conditions for stability.19 Theorem
2 also has important consequences from a market design point of view as any relaxation of
stability that guarantees existence may limit the size of claims or eliminate waste but cannot
achieve both in general.

We show in Section 5.2 that the Priority Focused Deferred Acceptance (PFDA) algo-
rithm (Delacrétaz, Kominers, and Teytelboym, 2016) finds a 1-bounded and size-consistent
matching, which directly implies the existence of such a matching. In Section 5.3, we define
size-stability as a novel relaxation of stability for matching markets with sizes. We show
that size-stability is characterized by size-consistency and non-wastefulness (Proposition 9)
and that the set of size-stable matchings is nonempty (Proposition 10). We discuss the
trade-offs between the two approaches in light of several applications in Section 5.4.

5.2 Wasteful Solution

In applications where waste can be tolerated, a sensible relaxation of stability consists in the
combination of feasibility, K-boundedness and size-consistency. As we discuss in Section 5.4,
Delacrétaz, Kominers, and Teytelboym (2016) argue that refugee resettlement constitutes
such an application. We show that their Priority-Focused Deferred Acceptance (PFDA)
algorithm (Algorithm 4) produces a feasible, 1-bounded and size-consistent matching. Its
structure is reminiscent of the Deferred Acceptance algorithm with the difference that an
agent stops contesting an object as soon as that object has rejected an agent with a higher
priority. This ensures that agents never envy each other: an agent is assured that all agents

19While removing size-stability as a requirement does not guarantee existence in general, it has an impact
on some markets. Example 1 shows that the set of stable matchings may be empty even in the case where a
feasible, 1-bounded and non-wasteful matching exists. {(s1, ∅), (s2, o2), (d1, o1)} satisfies those properties as
s1 is the only agent to have a claim, that claim is to o2 and the unique unit of that object is assigned to s2.
That matching is however not size-consistent as s1 envies s2.
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Algorithm 4: Priority-Focused DA (Delacrétaz, Kominers, and Teytelboym, 2016)

Initialization:
Given a market, let X1 ≡ A×O.
Round k ≥ 1:

Given Xk, every agent a ∈ A proposes to his top choice oa(Xk).
For each object o, agents are considered one at a time in order of priority. An
agent is tentatively accepted if all proposing agents with a higher priority have
been tentatively accepted and the total number of units required by himself
and all proposing agents with a higher priority does not exceed qo. The agent
is rejected otherwise.
If all agents are tentatively accepted, let µDA ≡ µ(Xk). Otherwise, construct
Xk+1 by eliminating from Xk all pairs involving an agent and an object such
that the object has rejected the proposal of either the agent or an agent with
a higher priority and continue to Round k + 1.

matched to an object he prefers to his own have a higher priority than him for that object.20

The PFDA algorithm may create waste when a double-unit agent is rejected and leaves
one unit unassigned, however all other units are assigned. As the algorithm ensures that no
agent envies another, that unassigned unit is the only one to which agents may have a claim.
These considerations naturally lead to the following result.

Proposition 8. µPFDA is feasible, 1-bounded and size-consistent.

Corollary 4 (to Proposition 8). There exists a feasible, 1-bounded and size-consistent match-
ing in all markets.

Proposition 8 means that, whenever a small amount of waste can be tolerated, claims
can be limited to just one unit while preserving size-consistency.21 The PFDA algorithm
also has the advantage to be polynomial-time solvable since at least one agent-object pair is
definitively eliminated in each round.22

20Delacrétaz, Kominers, and Teytelboym (2016) refer to this property as quasi-stability.
21The DA algorithm also produces a 1-bounded matching, however the latter is not necessarily size-

consistent. This is illustrated by Example 3, where the DA algorithm matches s2 to o1 and s1 to o2 although
s1 ◃o1 s2 and o1 ≻s1 o2.

22Proposition 8 implies that the PFDA algorithm algorithm also satisfies Biró and McDermid’s (2014)
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Round 1 Round 2 Round 3 Round 4
s1→ o1 7 s1→ o2 3 s1→ o2 3 s1→ o2 3

ŝ1→ o2 3 ŝ1→ o2 3 ŝ1→ o2 3 ŝ1→ o2 3

ŝ2→ o2 3 ŝ2→ o2 7 ŝ2→ o1 3 ŝ2→ o1 3

d1→ o1 3 d1→ o1 3 d1→ o1 7 d1→ ∅ 3

Table 7: PFDA algorithm on Example 5.

Table 7 presents the computations of the PFDA algorithm on Example 5. In the first
Round, o1 is available in enough units to satisfy the requirement of either one of s1 and d1,
but not both. The agent with the lowest priority – in this case s1 – is rejected. In Round
2, s1 proposes to o2, his second choice. Only two of s1, ŝ1 and ŝ2 may be matched to that
object. ŝ2 is rejected has he has the lowest priority. He then proposes to o1 in Round 3 and
is tentatively accepted as he has a higher priority than both d1 and s1. Then d1 is rejected
since the first unit of o1 is now tentatively assigned to ŝ2 and only one remains. d1 proposes
to the null object in Round 4. The algorithm ends as none of the agents are rejected. It
yields

µPDFA = {(s1, o2), (ŝ1, o2), (ŝ2, o1), (d1, ∅)}.

ŝ1 does not have a claim at µPDFA since he is matched to his first preference. ŝ2 does not
have a claim either since he is matched to his second preference and both units of his first
preference, o2, are assigned to agents with a higher priority (s1 and ŝ1). d1 and s1 are also
matched to their second preference, respectively ∅ and o2. They both have a one-unit claim
to their first preference, o1, as one unit of that object is assigned to the higher priority agent
ŝ2 and the other is unmatched. µPFDA is consequently 1-bounded. It is also size-consistent
as agents only have a claim to an unassigned unit.23

relaxation of stability (see footnote 15). The difference with the TDBU algorithm is that µPFDA is stable
in a market where the capacity of some objects (those with a wasted unit) is reduced by one unit while
µ(φ(A × O)) is stable in a market where the capacity of some objects (those involved in a bottlneck) is
increased by one unit. The algorithm proposed by Yenmez (2014) also constitutes such an approximation
in our model, however it entirely precludes single-unit agents from being assigned the last unit of an object.
Consequently, the matching it produces is dominated by the outcome of the PFDA algorithm.

23Yenmez (2014) introduces a version of the agent-proposing deferred acceptance algorithm which can be
adapted to our model. In every round, objects accept agents one at a time in order of priority as long as
they have at least two units available and reject the remaining proposals after that. One unit of each object
may therefore remain unassigned at the end of the algorithm even though some single-unit agents have been
rejected. As priorities are otherwise respected, this algorithm produces a 1-bounded and size-stable matching.
The only difference between this algorithm and the PFDA algorithm is that the latter assigns the last unit
of a single-unit agent as long as no double-unit agent with a higher priority has been rejected. The matching
produced by the PFDA algorithm consequently weakly dominates the outcome of Yenmez’ (2014) algorithm.

50



5.3 Size-Stable Matchings

While waste is tolerable in some applications, in many cases it is preferable to assign units to
a lower priority agent than not at all. We argue in Section 5.4 that this is the case in tuition
exchange. We know from Theorem 2 that the size of claims cannot be bounded if existence
and non-wastefulness are to be guaranteed. We show that on the other hand size-consistency
is compatible with these properties. We argue, however, that not all matchings satisfying
these properties are desirable and that double-unit agents need to be compensated for the
possible priority violations.

We say that an agent-object pair (a, o) is a strong blocking pair of a matching µ if a
has a claim at µ to at least wa units of o that are either unassigned or assigned to agents
with a lower priority and a weakly larger size. Formally, (s, o) ∈ S × O is a strong blocking
pair of µ ∈ M if

∑
a∈Â(a,o)(µ)

wa ≤ qo−1 and (d, o) ∈ D×O is a strong blocking pair of µ ∈ M
if
∑

a∈Â(a,o)(µ)∪So(µ)
wa ≤ qo − 2. The definition of a strong blocking pair is equivalent to that

of a blocking pair for single-unit agents. For double-unit agents, it is a stronger concept as
a strong blocking pair only occurs if two or more units are either unassigned or assigned to
double-unit agents with a lower priority. Double-unit agents can therefore have a claim to
arbitrarily many units assigned to single-unit agents with a lower priority without creating
a strong blocking pair.

Definition 6. A matching is size-stable if it is feasible and does not have any strong
blocking pair.

We denote by S̃ the set of size-stable matchings. Size-stability constitutes a relaxation
of stability as it allows blocking pairs that involve a double-unit agent with a claim to units
assigned to single-unit agent. In fact, it is characterized by all but one of the properties that
characterize stability.

Proposition 9. A feasible matching µ is size-stable if and only if it is size-consistent and
non-wasteful.

Size stability constitutes an essential fairness criterion. While it does not completely
eliminate blocking pairs, it ensures that no unit is wasted and that an agent a only envies
an agent a′ if wa > wa′ . These properties have important practical implications as they offer
a justification to agents whose priority may have been violated.

A matching µ ∈ M is an undominated size-stable matching if it is size-stable and
not dominated by any size-stable matching. Similarly, µ is a d-undominated size-stable
matching if it is size-stable and not d-dominated by any size-stable matching.
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Round 1 Round 2
s1→ o1 3 s1→ o1 3

ŝ1→ o2 3 ŝ1→ o2 3

ŝ2→ o2 3 ŝ2→ o2 3

d1→ o1 7 d1→ ∅ 3

Table 8: SDDA algorithm on Example 5.

The set of size-stable matchings is nonempty in all markets. In fact, a simple algorithm
finds one such matching. We define the size-disjoint priority relation of object o, denoted
◃∗o, such that for any a, a′ ∈ A with a ◃o a

′, a′ ◃∗o a if wa′ < wa and a ◃∗o a
′ otherwise. In words,

the size-disjoint priority relation is constructed by ranking all single-unit agents above all
double-unit agents and ranking agents of same size in order of priority. The size-disjoint
priority profile is the |O|-tuple of size-disjoint priority relations ◃∗ ≡ (◃∗o)o∈O. We call
Size Disjoint Deferred Acceptance (SDDA) the algorithm obtained by running the Deferred
Acceptance algorithm on the market ⟨A,O,≻,◃∗,w,q⟩ and denote by µSDDA the matching
produced in this way.

Proposition 10. µSDDA is an undominated size-stable matching.

µSDDA is size-consistent by construction of ◃∗. It is also non-wasteful and not dominated
by any other size-stable matching as objects only reject agents when its units have been
assigned to agents with a higher size-disjoint priority. We illustrate the algorithm with
Example 5. Computations are displayed in Table 8. In Round 1, all agents propose to their
first preference. o2 tentatively accepts both ŝ1 and ŝ2 as their total size is 2 = qo2 . In contrast,
o1 cannot tentatively accept both s1 and d1 as their total size is 3 > 2 = qo1 . Although d1 has
a higher priority, s1 ◃∗o d1 since ws1 < wd1 , therefore o1 tentatively accepts s1 and rejects d1,
illustrating how the algorithm can violate priorities. In Round 2, d1 proposes to his second
preference, which is the null object. As all agents are tentatively accepted, the algorithm
ends and produces

µSDDA = {(s1, o1), (ŝ1, o2), (ŝ2, o3), (d1, o1)}.

µSDDA is size-stable as its only blocking pair is (d1, o1) and one of o1’s two units is assigned
to a single-unit agent. It is undominated as all single-unit agents are matched to their first
preference and matching d1 to his first preference, o1, violates feasibility unless s1 is made
worse-off. In fact, it can be verified that µSDDA is the unique size-stable matching in this
market since making any agent either better- or worse-off creates a strong blocking pair.

The SDDA algorithm provides a sensible solution to Example 5. Compared to the PFDA
algorithm, it eliminates waste by matching s1 to o1. The trade-off is that it allows d1 to have
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Round 1 Round 2
s1→ o1 3 s1→ o1 3

s2→ o1 3 s2→ o1 3

s3→ o1 3 s3→ o1 3

s4→ o2 3 s4→ o2 3

d1→ o1 7 d1→ ∅ 3

d2→ o1 7 d2→ ∅ 3

Table 9: SDDA algorithm on Example 6.

a 2-unit claim to o1. In general, however, the SDDA algorithm may produce an arguably
unfair outcome as it favors single-unit agents over double-unit ones and only takes priorities
into account for same-size agents. We illustrate this with another example.

Example 6 (Unfair SDDA Outcome). There are four single-unit agents s1, s2, s3 and
s4, two double-unit agents d1 and d2 and two non-null objects o1 and o2. The preferences,
priorities and quotas are

≻s1 : o1, o2, ∅ ≻s3 : o1, o2, ∅ ≻d1 : o1, ∅, o2 ◃o1 : d1, s4, d2, s1, s2, s3 qo1 = 4

≻s2 : o1, o2, ∅ ≻s4 : o2, o1, ∅ ≻d2 : o1, ∅, o2 ◃o2 : s1, s2, s4, s3, d1, d2 qo2 = 2

Table 9 presents the computations of the SDDA algorithm on Example 6. In Round 1,
all agents propose to their first preference. s4 proposes to o2 and is tentatively accepted as
he is the only proposers. All other agents propose to o1. Despite having a higher priority, the
double unit agents d1 and d2 are considered after the single-unit agents s1, s2 and s3. The
latter are tentatively accepted and, as only one unit remains available, d1 and d2 are rejected.
In Round 2, d1 and d2 propose to the null object. All agents are tentatively accepted so the
algorithm ends and produces

µSDDA = {(s1, o1), (s2, o1), (s3, o1), (s4, o2), (d1, ∅), (d2, ∅)}.

This matching is size-stable as it has only two blocking pairs – (d1, o1) and (d2, o1) – and three
units of o1 are assigned to single-unit agents. It is an undominated size-stable matchings as
all singe-unit agents are matched to their first preference and matching a double-unit agent
to his first preference would make at least one single-unit agent worse-off.

In spite of these desirable properties, µSDDA is arguably unfair to the double-unit agents,
who were rejected by o1 because of single-unit agents with a lower priority. In some instances,
this is inevitable. We know from Theorem 2 that the size of claims cannot be bounded for non-
wasteful matchings, a result that directly carries over to size-stable matchings. In Example

53



5, d1 is not matched to o1 in any size-stable matchings. Not fulfilling his claim to that object
can be justified as it would violate size-stability. This is not the case in Example 6. The
matching

µ′ = {(s1, o1), (s2, o1), (s3, o2), (s4, o2), (d1, o1), (d2, ∅)}

is size-stable. The only blocking pair is (d2, o1), which is not a strong blocking pair since
the four units of o1 are assigned to d1, who has a higher priority, and s1 and s2, who have a
smaller size. Compared to µSDDA, µ′ does not violate d1’s priority as he is matched to o1. d2’s
priority is still violated, however this cannot be prevented. If d2 is matched to o1, feasibility
dictates that either d1 or both s1 and s2 be matched to another object. In the former case,
d1 envies d2 and the matching is not size-stable. In the latter case, size-stability dictates
that both s1 and s2 be matched to o2. In turn, s4 is matched to the null object by feasibility
and envies d2, violating size-stability. µ′ is fairer than µSDDA as it respects the priorities of
double-unit agents as much as possible. Formally, µ′ d-dominates µSDDA because it makes
d1 better-off and d2 is indifferent between the two matchings. In fact, µ′ is d-undominated
because any d2 cannot be matched to o1 without violating size-stability.24

We propose d-undominated size-stable matchings as a solution concept. Such a matching
alleviates the disadvantage that double-unit agents suffer as their priority may be violated.
Every blocking pair is justifiable in the sense any size-stable matching that contains the pair
makes at least one other double-unit agent worse-off. In Section 4.2 (Example 4), we argued
that finding a d-undominated stable matching rather than any undominated one is desirable
from a fairness point of view as it avoids creating 1-unit claims whenever possible. This
fairness concern becomes crucial when it comes to size-stability and the size of claims that
double-unit agents may have is unbounded.

As d-domination is a partial order, the existence of a size-stable matching implies the
existence of a d-undominated size-stable matching. The next result then follows directly
from Proposition 10.

Corollary 5 (to Proposition 10). The set of d-undominated size-stable matchings is nonempty.

Beyond existence, d-undominated size-stable matchings have a welfare advantage over
stable matchings. By Propositions 2 and 9, all stable matchings are size-stable. Conse-
quently, a d-undominated size-stable matching may dominate some size-stable matchings –
including some d-undominated stable matchings – but none of the stable matchings dominate
any d-undominated size-stable matching. In various applications (e.g. day care or tuition ex-
change), stability is desirable as a fairness criterion. d-undominated size-stable matchings

24It can be verified that µSDDA and µ′ are the only two size-stable matchings in this market.
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may constitute a strong enough fairness requirement in many of these applications as block-
ing pairs can be justified by size differences and the fact that any other size-stable matching
makes a double-unit agent worse-off. If so, their welfare and existence advantages over sta-
bility make d-undominated size-stable matchings a natural solution concept. The question
that remains is how to compute these matchings. We provide an answer in Section 6, where
we adapt our techniques from Sections 3 and 4 in order to find such a matching.

5.4 Discussion

Theorem 2 and Proposition 8 show that eliminating waste comes at a high cost when it comes
to respecting priorities as agents may have a claim to an arbitrarily large number of units
in all non-wasteful matchings, but it is possible to limit all claims to one unit by wasting
at most one unit of each object. These results outline an important trade-off that a market
designer faces when confronted to a matching market with sizes. Whether it is preferable to
eliminate waste or bound the size of claims depends on the specificities of the application at
stake. As Delacrétaz, Kominers, and Teytelboym (2016) argue, waste is tolerable in refugee
resettlement as groups of refugees (agents) arrive regularly and any unused capacity can
benefit the next group. Goodwill from local areas (objects) is on the other hand of the
utmost importance as they are the one providing service capacities (quotas). Respecting the
local areas’ priorities and not fully using the capacity they make available constitute two
market design tools that can help generate that goodwill. The PFDA algorithm appears to
be a natural solution in that case.25 At the other end of the spectrum, tuition exchange is
a “one-shot” market in the sense that the number of students that a university can send to
its partners does not increase if some places were not used in previous years. A university
exchange office may for then prefer to send a lower quality applicant rather than no one
at all.26 Eliminating waste may also constitute a priority in a market with agents on both
sides, such as the National Resident Matching Program (NRMP). Participants may rapidly
lose trust in the matching system if a hospital does not fill a position that eligible applicants
would be willing to take. The problem may be less severe if the hospital has been able to
fill the position with a lower-quality applicant. Day care lies somewhere in between. While
children may join at any point, the largest intake takes place once a year when older children

25Delacrétaz, Kominers, and Teytelboym (2016) also show that the PFDA algorithm can be made strategy-
proof at the cost of making families worse-off and creating more waste.

26This may of course depend on a university’s specific circumstances. Dur and Ünver (2017) argue that
some agreements specify that each partner must send approximately the same number of students over a
moving time window. Such a feature could motivate an exchange office to send fewer students one year
in order to send more of them later on. In practice, this requirement appears in the United States but is
uncommon outside. For example, it does not play a role in Erasmus agreements.
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Algorithm 5: Permissive Top-Down Bottom-Up (p-TDBU)

Initialization:
Given a market, a set of agent-object pairs X, let X1 ≡ X.
Step k ≥ 1:
If Xk /∈ X, let ϕ(X) ≡ ∅. Otherwise, construct Xk+1 by eliminating from Xk all
agent-object pairs such that the object p-rejects the agent at Xk and, if X = A×O,
all agent-object pairs such that the agent receives a guarantee at Xk from an object
he prefers.
If Xk+1 = Xk, let ϕ(X) ≡ Xk. Otherwise, continue to Step k + 1.

go to school. At this point, it may be tolerable to underuse the capacity of day care centers
in the hope that these places be filled with children who apply later. The cost of doing so
may however be large as demand typically greatly exceeds supply. Whether it outweighs the
benefit of limiting the size of claims depends on specific circumstances that are beyond the
scope of this paper.

6 d-Undominated Size-Stable Matching
d-undominated size-stability constitutes a natural solution concept when eliminating waste is
an important requirement. Double-unit agents may have large claims to some objects but are
as well-off as size-stability permits. In this section, we show that a suitable modification of our
Undominated Stable Matching (USM) algorithm (Algorithm 3) produces a d-undominated
size-stable matching. We present the Permissive Top-Down Bottom-Up (p-TDBU) algorithm
in Section 6.1 and combine it with a depth-first search in Section 6.2. We illustrate the full
algorithm in Section 6.3 with Example 6.

6.1 Permissive Top-Down Bottom-Up

The Permissive Top-Down Bottom-Up (p-TDBU) algorithm is presented in Algorithm 5.
It follows the general architecture of the TDBU algorithm (Algorithm 2) but adapts it to
size-stability. Any set of agent-object pairs X ⊆ A× O can enter the algorithm. The latter
returns ϕ(X), which is either the empty set or a complete subset of X. In each round, a set
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of agent-object pairs X ∈ 2A×O enters. If X is complete (X ∈ X), the algorithm eliminates
some of the pairs and considers a smaller set in the next round, until such round where it
does not find any pair to eliminate or an incomplete set enters. If X is incomplete (X /∈ X),
the algorithm ends and returns the empty set.

The Bottom-Up part is identical to that of the TDBU algorithm. An object o gives an
agent a a guarantee at X if a’s guarantee number for o at X does not exceed o’s quota. In
the next round, an agent with a guarantee stops contesting all less preferred objects.

The Top-Down part is modified to allow more single-unit agents to continue contesting
an object for which their rejection number (as defined in Section 3.1) exceeds the quota,
hence it is more “permissive”. This allows single-unit agents to take advantage of units that
become available after a double-unit agent with a higher priority stops contesting an object.

Specifically, given a pair (a, o) ∈ X, the algorithm calculates the p-rejection number
of agent a for object o at X, which we denote R̃(a,o)(X). For double-unit agents, p-rejection
numbers are calculated almost identically to rejection numbers by adding up the size of the
agent as well as all agents with a higher priority who contest the object as their top choice.
For single-unit agents, the size of all single-unit agents with a higher priority who contest
the object as their top choice is taken into account but the size of double-unit agents is only
taken into account if they have a higher priority and do not contest any other object. For
notational convenience, let us define D̃(a,o)(X) ≡ {d′ ∈ D̂(a,o)(X) | Od′(X) = {o}} to be the
set of double-unit agents who only contest o at X and have a higher priority than d. Then
the p-rejection number of agent a for object o at X ∈ X is

R̃(a,o)(X) ≡

{
wa +

∑
a′∈Â(a,o)(X)∩Ao(X) wa′ if a ∈ D

wa +
∑

s∈Ŝ(a,o)(X)∩So(X) ws +
∑

d∈D̃(a,o)(X) wd if a ∈ S.

We say that object o p-rejects agent a at X if R̃(a,o)(X) > qo. If a double-unit agent d’s
p-rejection number for an object o exceeds the quota, then an agent envies d in any feasible
matching that contains (d, o). In any size-stable matching included in X, d is not matched to
o. This condition is identical to Lemma 5’s Condition (ii). If a single-unit agent’s p-rejection
number for an object o exceeds the quota, then the qo units of o are assigned to agents with
a higher priority that are either a single-unit agent who contests o as his top choice or a
double-unit agent that only contests o. If s is matched to o, by feasibility, at least one of
these agents is not. If a single-unit agent who contests o as his top choice at X is matched to
a different object, he prefers o to that object and size-consistency is violated. If a double-unit
agent who only contests o at X is not matched to it, an incomplete set of pairs obtains. We
conclude that s is not matched to o in any size-stable matching. If an object o p-rejects an

57



agent a at X, the pair is not an element of any size-stable matching included in X. In the
next step of the p-TDBU algorithm, a no longer contests o.

The p-rejection number differs from the rejection number in two important ways. First,
the size of double-unit agents who contest more than one object do not count towards single-
unit agents’ p-rejection number. Second, the size of agents in the pair’s envy set is not taken
into account. Both differences arise from the definition of size-stability. Whether or not a
single-unit agent is envied by double-unit agents does not affect his ability to be matched to
the object in a size-stable matching, therefore his p-rejection number is not affected by these
agents.

Similarly to the TDBU algorithm, the p-TDBU algorithm eliminates agent-object pairs
from the top-down and the bottom-up. A pair is eliminated if the agent has received a
guarantee form an object he prefers or if the object p-rejects the agent. It does so iteratively
until such step where it obtains an incomplete set of pairs or it cannot eliminate any pair. We
show below that this does not affect the search for a d-undominated stable matching. The
Top-Down part only eliminates agent-object pairs that are not an element of any size-stable
matching, as the following lemma formalizes.

Lemma 11. For any X ∈ X and any (a, o) ∈ X, if o p-rejects a at X, then for any µ ∈ S̃∩2X ,
(a, o) /∈ µ.

The Bottom-Up part does not have the same properties. As discussed in Section 5.3, a
size-stable matching can be constructed by favoring single-unit agents over double-unit ones.
If the guarantee number of a double-unit agent d for an object o at X does not exceed qo,
this does not mean that d is matched to o or an object he prefers in any size-stable matching.
As long as enough single-unit agents are matched to o, d can be matched to a less preferred
object without (d, o) being a strong blocking pair. In fact, other double-unit agents may
benefit from d not being matched to o, as a result eliminating all pairs involving d and
his less preferred objects may preclude finding some d-undominating size-stable matchings.
The following Lemma shows however that the p-TDBU algorithm does not eliminate all
d-undominated size-stable matchings when it is used on the full set of agent-object pairs.

Lemma 12. ϕ(A×O) includes at least one d-undominated size-stable matching.

Lemma 12 means that the p-TDBU algorithm can be used initially on the full set of agent-
object pairs. This allows searching for a d-undominated size-stable matching within a smaller
set of pairs. That set, ϕ(A × O), may not contain all d-undominated size-stable matchings
but it contains at least one. Unfortunately, Lemma 12 does not generalize to smaller sets
of pairs so the d-USSM cannot use the Bottom-Up part of the p-TDBU algorithm after the
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Algorithm 6: d-Undominated Size-Stable Matching (d-USSM)

Initialization:
Given a market and an index θ.
Round k ≥ 1:
Use the p-TDBU algorithm to calculate ϕ(Xk)

Case 1: ϕ(Xk) ̸= ∅ and C(ϕ(Xk)) = ∅.
Let µ̃∗

θ ≡ µ(ϕ(Xk)).
Case 2: ϕ(Xk) ̸= ∅ and C(ϕ(Xk)) ̸= ∅.
Let zk be the candidate of ϕ(Xk) with the smallest index θ. Construct Xk+1 by
protecting zk at ϕ(Xk) and Zk+1 by adding zk to Zk and continue to Round k + 1.
Case 3: ϕ(Xk) = ∅.
Let zi be the last pair that was added to Zk. Construct Xk+1 and Zk+1 by eliminating
zi from ϕ(Xi), let Zk+1 = Zi and continue to Round k + 1.

first round as this runs the risk of producing a set of pairs that does not include any d-
undominated size-stable matching. For this reason, the Bottom-Up part is only used when
the algorithm is applied to the full set of agent-object pairs A × O. When the algorithm is
applied to a smaller set, objects p-rejects agents but do not give any guarantee.27 Similarly
to the TDBU algorithm, the p-TDBU algorithm produces a smaller set of agent-object pairs.
Mirroring Proposition 4, we show that the top matching of that set has important properties.

Proposition 11. µ(ϕ(A × O)) is size-consistent and non-wasteful. It is a d-undominated
size-stable matching if and only if it is feasible.

6.2 Full Algorithm

The d-Undominated Size-Stable Matching (d-USSM) algorithm is presented in Algorithm 6.
It adapts the USM algorithm in order to find a d-undominated size-stable matching. The
full set of agent-object pairs A × O enters the algorithm. The latter returns µ̃∗

θ, which is a
27One may question the purpose of having the Bottom-Up part at all. Indeed, all results of Section 6 hold

if the p-TDBU algorithm only consists of its Top-Down part even when applied to A × O. The advantage
of the Bottom-Up part is to further reduce the set of pairs that need to be considered. As the depth-first
search of the d-USSM algorithm is not polynomial-time solvable, starting in Round 1 with a smaller set of
pairs can have a large impact on the algorithm’s running time.

59



matching. The p-TDBU algorithm runs first and produces ϕ(A × O). If the top matching
of that set is feasible, the algorithm ends and produces that matching. Otherwise, the
remainder of the d-USSM algorithm searches for (and finds) a d-undominated size-stable
matching included in ϕ(A×O). (Lemma 12 guarantees the existence of such a matching.) It
begins by protecting a pair (d, o) involving a double-unit agent to construct X2. The p-TDBU
algorithm runs at the start of Round 2. As a result of the protection, d only contests o and
his size counts towards the rejection number of single-unit agents who contest o and have
a lower priority. The p-TDBU algorithm may be able to eliminate more pairs as a result.
The d-USSM algorithm continues protecting pairs one at a time until the p-TDBU algorithm
produces either a set of pairs with a feasible top matching or the empty set. In the former
case, it ends as it has found a d-undominated size-stable matching. In the latter case, it has
found that there does not exist any size-stable matching included in ϕ(A×O) that contains
all pairs that have been protected thus far. The algorithm returns to the last protected pair
and eliminates it. Such pair exists as otherwise it would have been established that ϕ(A×O)

does not include any size-stable matching, a contradiction of Lemma 12. Therefore, the
d-USSM algorithm continues until it finds a d-undominated size-stable matching.

Mirroring Section 4, we say that a complete set of agent-object pairs is p-irreducible if
it does not change when it enters the p-TDBU algorithm. Formally, the set of p-irreducible
sets of agent-object pairs Ĩ is defined such that for any X ∈ X, X ∈ Ĩ if ϕ(X) = X. Given
a p-irreducible set of pairs X ∈ Ĩ, the following definition determines what pairs are eligible
for protection.

Definition 7. Given a p-irreducible set of agent-object pairs X ∈ Ĩ, (a, o) ∈ X is a candidate
of X if (i)

∑
a∈Ao(X) wa > qo, (ii) d ∈ Do(X) and |Od| > 1, and (iii) for all d′ ∈ Do(X) with

|Od′ | > 1, d′ Do d.

We denote the set of candidates of X by C(X). In words, a candidate of X is an agent-
object pair (a, o) ∈ X such that (i) the combined size of all agents who contest o as their
top choice exceeds the quota, (ii) a is a double-unit agent who contests o as his top choice
but also contests at least one other object, and (iii) all other agents in the same situation
have a higher priority. Candidates involve double-unit agents who contest an object as their
top choice but whose size does not count towards the rejection number of single-unit agents
with a lower priority because they contest other objects, as a result the total size of agents
contesting the object as their top choice exceeds the quota. If there are multiple agents in
that situation for a given object, the candidate is the pair involving the agent with the lowest
priority. These pairs, at most one per object, are eligible for protection and the one with the
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smallest index θ is protected.28

Protecting the pair (d, o) ∈ C(X) allows identifying other pairs that can be eliminated.
This obviously includes all pairs involving d and any object other than o. A matching µ ⊆ X

that includes (d, o) is not size-consistent, hence not size-stable, if an agent with a higher
priority than d for o is matched to a less preferred object. Any pair involving an agent with
a higher priority than d for o and one of d’s less preferred objects can be eliminated as a
consequence. We formalize this below.

Definition 8. Given an p-irreducible set of agent-object pairs X ∈ Ĩ, the p-protection set
of a pair (d, o) ∈ C(X) is

P̃(d,o)(X) ≡ {(a, o′) ∈ X | a Do d and o ≻a o
′}.

Lemma 13. For any µ ∈ S̃ ∩ 2X such that (d, o) ∈ µ, µ ⊆ ϕ(X \ P̃(d,o)(X)).

Protecting (d, o) allows focusing on size-stable matchings that contain it. The set of
pairs constructed by protecting (d, o) is not necessarily p-irreducible. d as well as double-
unit agents with a higher priority exclusively contest o, which means that their sizes count
towards the rejection numbers of single-unit agents with a lower priority. The latter may be
rejected as a result. Lemma 13 means that the set obtained by successively protecting (d, o)

and running the p-TDBU algorithm contains all size-stable matchings included in X that
contain (d, o).

We now have all the ingredients of the d-USSM algorithm. In each Round, the d-USSM
considers a set that includes all size-stable matchings that themselves include all the protected
pairs. If that set is empty, then there does not exist any size-stable matching that includes
all the protected pairs. The algorithm backtracks by eliminating the last protected pair. By
Lemma 12, such pair exists as if no pair has been protected the set considered includes a
d-undominated size-stable matching. In addition, if the set considered is complete, its top
matching is size-consistent and non-wasteful because pairs are protected and eliminated in a
way that preserves these properties. Eventually, enough pairs have been eliminated so that
a set without any candidate is considered. The top matching of that set is size-stable by
Proposition 9 since it is feasible, size-consistent and non-wasteful. This section’s main result
naturally follows.

28Alternative rules could be used to determine which pairs are eligible for protection. For example, one
might want to start by protecting pairs involving double-unit agents with the highest priority or consider
one double-unit agent at a time, no matter where he ranks in the object’s priority. While various approaches
would allow finding a d-undominated size-stable matching, an advantage of the chosen approach is that in
each round, the top matching of the set of pairs considered is size-consistent and non-wasteful if it exists.
Therefore, the algorithm stops whenever a feasible top matching is found without having to verify whether
some objects have excess supply as is the case in Section 4.
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Theorem 3. For any index θ, µ̃∗
θ is a d-undominated size-stable matching.

6.3 Example

We showed in Section 5.3 that Example 6 has two size-stable matchings:

µSDDA = {(s1, o1), (s2, o1), (s3, o1), (s4, o2), (d1, ∅), (d2, ∅)}

and µ′ = {(s1, o1), (s2, o1), (s3, o2), (s4, o2), (d1, o1), (d2, ∅)}.

µ′ is a d-undominated size-stable matching, but µSDDA is not as µ′ d-dominates it. We next
illustrate the d-USSM algorithm with Example 6 and show that it produces µ̃∗

θ = µ′ for any
index θ. Computations are displayed in Table 10.

In Round 1, the p-TDBU algorithm runs on the full set of pairs X1 = A × O. Both
double-unit agents contest all three objects, therefore their sizes do not count towards the
p-rejection numbers of single-unit agents with a lower priority. The p-rejection number of s4
is 1, his own size, since d1’s size does not count towards it. The p-rejection number of s1 is
also 1 as the sizes of d1 and d2 do not count towards it and s4 contests o1 as a subsequent
choice. The p-rejection numbers of s2 and s3 are respectively 2 (= 1+1) and 3 (= 1+1+1)
since these agents as well as s1 contest o1 as their top choice. The p-rejection number of d1 is
2, his own size, since he has the highest priority. The p-rejection number of d2 is 4 (= 2+ 2)
as d1’s size is taken into account. None of the p-rejection numbers exceed qo1 = 4, therefore
o1 does not p-reject any agent. s4 is the only agent to contest o2 as his top choice. It causes
d1 and d2’s p-rejection numbers to exceed the quota, therefore o2 p-rejects these two agents.
Even without p-rejection, these pairs would have been eliminated by the Top-Down part
since all agents receive a guarantee from the null object and d1 and d2 find o2 unacceptable.
s1, s2, and s4 receive a guarantee from their respective second preference and, as a result, no
longer contest the null object. Importantly, d1 receives a guarantee from o1, his top choice.
In the second step of the p-TDBU algorithm, d1 only contests o1. This is denoted by “T̃”
in the second column of the row devoted to that pair. The two units that d1 requires are
now taken into account when calculating the p-rejection numbers of single-unit agents with
a lower priority. The p-rejection numbers for o1 of all four single-unit agents each rise by 2.
This causes o1 to p-reject s3 as his p-rejection number has risen to 5 > 4 = qo1 . The third
step is not displayed as the p-TDBU algorithm does not eliminate any additional pair. In
total, seven pairs have been eliminated and eleven remain. µ(ϕ(X1)) is not feasible since the
combined size of s1, s2, d1, and d2 is 6 > 4 = qo1 . The only candidate in ϕ(X1) is (d2, o1)

since d1 only contests o1. That pair is protected, which means that d2 stops contesting the
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Round 1
X1 = A×O, Z1 = ∅

o1 Pref. G R̃ (4) El. o2 Pref. G R̃ (2) El.

d1 T 2 2 3 s1 2 1 1 3

s4 2 3 1 3 s2 2 2 1 3

d2 T 5 4 s4 T 3 1

s1 T 6 1 s3 2 4 2

s2 T 7 2 d1 U 6 3 7 El.

s3 T 8 3 d2 U 8 3 7 El.

o1 Pref. G R̃ (4) El. o2 Pref. G R̃ (2) El.

d1 T̃ 2 2 3 s1 2 1 1 3

s4 2 3 3 3 s2 2 2 1 3

d2 T 5 4 s4 T 3 1

s1 T 6 3 s3 2 4 2

s2 T 7 4

s3 T 8 5 7 El.

ϕ(X1) = {(s1, o1), (s1, o2), (s2, o1), (s2, o2), (s3, o2),
(s3, ∅), (s4, o1), (s4, o2), (d1, o1), (d2, o1), (d2, ∅)}

Round 2
X2 = {(s1, o1), (s1, o2), (s2, o1), (s2, o2), (s3, o2),

(s3, ∅), (s4, o1), (s4, o2), (d1, o1), (d2, o1)}
Z2 = {(d2, o1)}

o1 Pref. R̃ (4) El. o2 Pref. R̃ (2) El.

d1 T̃ 2 s1 2 1

s4 2 3 s2 2 1

d2 T̃ 4 s4 T 1

s1 T 5 7 El. s3 T 2

s2 T 6 7 El.

o1 Pref. R̃ (4) El. o2 Pref. R̃ (2) El.

d1 T̃ 2 s1 T 1

s4 2 3 s2 T 2

d2 T̃ 4 s4 T 3 7 El.

s3 T 4 7 El.

o1 Pref. R̃ (4) El. o2 Pref. R̃ (2) El.

d1 T̃ 2 s1 T 1

s4 T 3 s2 T 2

d2 T̃ 5 7 El.

ϕ(X2) = ∅
X3 = {(s1, o1), (s1, o2), (s2, o1), (s2, o2), (s3, o2),

(s3, ∅), (s4, o1), (s4, o2), (d1, o1), (d2, ∅)}

Table 10: d-USSM algorithm on Example 6.
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null object. (No other pair is eliminated as d1 and s4 have already stopped contesting any
object they rank below o1.)

In Round 2, the p-TDBU algorithm no longer calculates guarantee numbers since the
set of pairs that enters does not contain all pairs in the market (X2 ⊂ (A × O)). d2 only
contests o1, therefore his size counts towards the p-rejection numbers of single-unit agents
with a lower priority. The p-rejection numbers of s1 and s2 for o1 are respectively 5 and 6 and
exceed the quota. o1 p-rejects both agents. In the second step of the p-TDBU algorithm,
s1 and s2 contest o2 as their top choice, as a result that object p-rejects s3 and s4. In
turn, s4 contests o1 as his top choice in the third step and that object p-rejects d2. The
set of pairs considered is no longer complete as d2 does not contest any object. The p-
TDBU algorithm ends after this third step and produces the empty set. This means that no
size-stable matching included in ϕ(X1) = ϕ(A × O) contains (d2, o1). X3 is constructed by
removing that pair from ϕ(X1) = ϕ(A×O).

Round 3 is not displayed in Table 10 because the p-TDBU algorithm does not eliminate
any additional pair. The algorithm ends and produces

µ̃∗
θ = µ(ϕ(X3)) = µ(X3) = µ′ = {(s1, o1), (s2, o1), (s3, o2), (s4, o2), (d1, o1), (d2, ∅)}.

7 Conclusion
In this paper, we consider an extension of the canonical school choice model where agents may
require either one or two units of an object. This seemingly small difference has important
consequences on the set of stable matchings, which does not necessarily contain an agent-
optimal stable matching and may even be empty. We propose the Top-Down Bottom-Up
(TDBU) algorithm – which iteratively identifies and eliminates agent-object pairs that are
not part of any stable matching – to reduce the number of agent-object pairs that need to
be considered in order to find a stable matching. We identify the existence of bottlenecks
as the reason why the TDBU algorithm does not necessarily find the agent-optimal stable
matching, and by extension the reason why such a matching may not exist. The Undominated
Stable Matching (USM) algorithm uses these bottlenecks to conduct a depth-first search that
finds an undominated stable matching whenever one exists and reports that the set of stable
matchings is empty otherwise (Theorem 1). Our algorithms have several advantages over
existing techniques. First, they find an undominated stable matching without needing to
compute the whole set of stable matchings. Second, the TDBU algorithm is polynomial-
time solvable and reduces the number of agent-object pairs that the USM algorithm has to
consider in each round, allowing it to run quicker. The TDBU algorithm may also be used in
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conjunction with other techniques in order to reduce the size of the market that needs to be
considered. Third, the basic ideas behind the TDBU and the USM algorithms are relatively
intuitive and can be explained to participants.

We characterize stability to be the combination of three properties: K-boundedness, size-
consistency and non-wastefulness. We show that any relaxation of stability that combines
K-boundedness and non-wastefulness does not guarantee existence (Theorem 2). This result
identifies an important trade-off that a market designer faces when confronted to a matching
market with sizes: the size of claims can be bounded or waste can be eliminated but not
both. If waste is tolerable, we show that the size of all claims can be limited to one unit while
preserving size-consistency. As a non-wasteful relaxation of stability, we propose size-stability,
which we characterize as the combination of size-consistency and non-wastefulness. We show
that the set of size-stable matchings is nonempty, however it may contain matchings that are
unfair to double-unit agents who may envy single-unit agents. We propose to compensate
double-unit agents by selecting a size-stable matching that is undominated for them. We
adapt the TDBU and USM algorithms in order to find such a matching (Theorem 3). We
argue that the market designer’s choice between eliminating waste and limiting the size of
claims should depend on the application at stake and in particular on how tolerable waste
and priority violations are relative to one another. On the one hand, refugee resettlement
provides an example where waste is tolerable but the respect of priority is essential. On
the other hand, tuition exchange is an application where wasting places may be worse than
violating priorities.

The present paper opens several avenues for future research. First, the model can be
extended to fit several real-world matching problems. Agents may have multidimensional
requirements, have preferences over both objects and a number of units, or desire units of
different objects. In all cases, it is possible to iteratively eliminate agent-object pairs by, for
each object, giving a guarantee to agents with a high enough priority and rejecting those with
a low enough priority. Protections can then be used to find an agent-undominated stable
matching or establish that the set of stable matchings is empty. Size-stability can also be
extended so long as it is possible to rank agents in terms of sizes. This is not possible when
there are multiple services and an agent requires more units of a service than another agent
but fewer units of another service. The trade-off between eliminating waste and bounding
the size of claims naturally remains in all extensions.

Second, McDermid and Manlove (2010) have established that it is not possible in general
to find a stable matching in polynomial time, but whether this extends to d-undominated size-
stable matchings remains an open question. Such algorithm, if it exists, would constitute an
improvement over the d-USSM algorithm presented in this paper. Otherwise, an interesting
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question is how to reach such a matching as efficiently as possible in order to make the
concept applicable to markets as large as possible. Similarly, it would appear worthwhile to
compare different techniques – and possible combinations of them – in order to minimize the
amount of computations required to find a stable matching.

Finally, this paper has remained silent on the strategic properties of the proposed algo-
rithms. While it is clear that neither the USM nor the d-USSM algorithm is strategy-proof,
successfully misrepresenting one’s preferences appears difficult given the amount of infor-
mation required about priorities and other agents’ preferences. In addition, the success
encountered by the NRMP despite the fact that it uses a manipulable algorithm is reassur-
ing. Nevertheless, a formal result on how close to strategy-proof these algorithms are would
be of great help to implement these techniques in real matching markets. The structure
provided by our algorithms may prove useful to such investigations.
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Appendix: Proofs
Proposition 1 is proved in the main text.

Proof of Proposition 2: (If) Let µ be a feasible, 1-bounded, size-consistent and non-
wasteful matching. By definition, a double-unit agent and an object form a blocking pair
if the former has a 2-unit claim to the latter. As µ is 1-bounded, there does not exist any
blocking pair at µ that involves a double-unit agent. Because µ is size-consistent, single-
unit agents do not envy any agent, therefore they do not have a claim to any assigned unit.
Because µ is non-wasteful, single-unit agents do not have a claim to any unassigned unit. It
follows that single-unit agents do not have any claim at all and are therefore not involved in
any blocking pair. µ is stable as a result. �

(Only If) Let µ be a feasible matching that is not 1-bounded. Then there exists an agent
a who has a 2-unit claim to an object o. As wa ≤ 2, a and o form a blocking pair and µ is not
stable. Next, let µ be a feasible and size-inconsistent matching. Then there exist two agents
a and a′ such that a envies a′ and wa ≤ wa′ . By definition, the fact that a envies a′ implies
oa′(µ) ≻a oa(µ) and a ◃oa′ (µ) a

′, therefore a has a wa′-unit claim to oa′(µ). As wa ≤ wa′ , a
has a wa-unit claim to oa′(µ), which means that a and oa′(µ) form a blocking pair, hence µ

is not stable. Finally, let µ be a feasible and wasteful matching. Then there exists an agent
a who has a claim to wa unassigned units of an object o. This directly implies that a has a
wa-unit claim to o, as a result (a, o) constitutes a blocking pair and µ is not stable. �

Proof of Lemma 1: Suppose that G(a,o)(X) ≤ qo and that, at some matching µ ⊆ X, a is
matched to a less preferred object o′ (that is, o ≻a o

′). As µ ⊆ X, Â(a,o)(µ) ⊆ Â(a,o)(X) so∑
a′∈Â(a,o)(µ)

wa′ ≤
∑

a′∈Â(a,o)(X)

wa′ ≤ qo − wa.

Then (a, o) constitutes a blocking pair and µ is not stable. �

Lemma 2 is proved in the main text.

Proof of Lemma 3: (G) As X ⊆ X ′, Â(a,o)(X) ⊆ Â(a,o)(X
′). Therefore

G(a,o)(X) = wa +
∑

a′∈Â(a,o)(X)

wa′ ≤ wa +
∑

a′∈Â(a,o)(X
′)

wa′ = G(a,o)(X
′). �
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(R) For any a′ such that a′ ◃o a, a′ is an element of E(a,o)(X)∪ (Â(a,o)(X)∩Ao(X)) if and
only if he does not contest any object at X that he prefers to o. As X ⊆ X ′, a contests at
X ′ all the objects that he contests at X, therefore

E(a,o)(X
′) ∪ (Â(a,o)(X

′) ∩ Ao(X
′)) ⊆ E(a,o)(X) ∪ (Â(a,o)(X) ∩ Ao(X)).

If follows that

R(a,o)(X
′) = wa +

∑
a′∈Â(a,o)(X

′)∩Ao(X′)

wa′ +
∑

a′∈E(a,o)(X
′)

wa′

≤ wa +
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ +
∑

a′∈E(a,o)(X)

wa′ = R(a,o)(X). �

Lemma 4 is proved in the main text.

Proof of Lemma 5: We have shown in the main text that (a, o) is not an element of any
stable matching contained in X if it satisfies Condition (i) or (ii). It remains to show that this
is also true if it satisfies Condition (iii). Suppose that a ∈ S, R(a,o)(X) > qo and there exists
a stable matching µ ∈ S that contains (a, o). We show in turn that each part of Condition
(iii) yields a contradiction.

Suppose towards a contradiction the existence of a single-unit agent s ∈ So(X) such
that R(a,o)(X) > R(s,o)(X) ≥ qo. By Lemma 4, a is envied at µ: E(a,o)(µ) ̸= ∅. By size-
consistency, µ also contains (s, o) and by Lemma 2 s is not envied at µ: E(s,o)(µ) = ∅. By
Lemma 3, R(s,o)(µ) ≥ R(s,o)(X) ≥ qo. Combining the last two results with the definition of
a rejection number implies

ws +
∑

a′∈Â(s,o)(X)∩Ao(X)

wa′ ≥ qo.

Therefore all qo units of o are assigned at µ to agent with a higher priority than a. It follows
that µ is not feasible, a contradiction.

Suppose now, also towards a contradiction, that R(a,o)(X) − qo is odd and for all s ∈
So(X) \ So(X), R(s,o)(X) ≥ qo. The difference between R(a,o)(µ) and R(a,o)(X) is obtained
by adding up the size of all agents with a higher priority than a who contest o as a subsequent
choice at X and are matched to o or a less preferred object at µ. Suppose that an agent
s ∈ So(X) \So(X) – that is a single-unit agent who contests o as a subsequent choice at X –
is matched to o or a less preferred object at µ. By assumption, R(s,o)(X) ≥ qo, therefore µ is
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not stable by our first argument. The difference between R(a,o)(µ) and R(a,o)(X) is therefore
even as it is obtained by adding up the size of double-unit agents. Then R(a,o)(µ) − qo is
odd by assumption. By Lemma 2,

∑
a′∈Ao(µ)

wa′ = qo and a has the lowest priority among
agents matched to o. Then wa +

∑
a′∈Â(a,o)(µ)

wa′ = qo so R(a,o)(µ) = qo +
∑

a′∈E(a,o)(µ)
wa′ .

By size-consistency, E(a,o)(µ) ⊆ D so R(a,o)(µ)− qo is even, a contradiction. �

Proof of Proposition 3: We proceed by induction. Let K = 1, 2, . . . be the last step of
the algorithm. If XK is complete, then φ(X) = XK . If Xk is incomplete, it does not include
any (stable) matching and φ(X) = ∅. In both cases φ(X) includes all stable matchings
included in XK . It remains to show that XK includes all stable matchings included in X.
The result is trivial if K = 1. If K > 1, suppose towards an inductive argument that for
some k = 1, 2, . . . , K − 1, Xk includes all stable matchings included in Xk. Our induction
hypothesis holds trivially for k = 1 as X1 = X. By Lemmas 1 and 5, Xk+1 includes all stable
matchings that are included in Xk, hence it includes all stable matchings included in X. By
induction, XK includes all stable matchings included in X. �

Proof of Proposition 4: Let K be the number of steps that the TDBU algorithm lasts
when applied to A × O and, for all k = 1, . . . , K, let Xk denote the set of agent-object
pairs that enters Step k. Then X1 = A × O and Xk is complete for all k = 1, . . . , K − 1.
If XK is incomplete, then an object o rejects an agent a even though G(a,o)(X

K−1) ≤ qo, a
contradiction.

We prove the remaining properties by induction. Suppose that for some k = 1, . . . , K −
1, Xk includes all stable matchings and µ(φ(Xk)) is 1-bounded, size-consistent and non-
wasteful. X1 = A× O trivially satisfies these properties. We show that Xk+1 satisfies them
as well. By Condition (i) of Lemma 5, if an object rejects an agent it also rejects all agents
with a lower priority and a weakly larger size, therefore µ(φ(Xk+1)) is size-consistent. An
object does not reject an agent unless the latter’s rejection number exceeds the quota. By the
induction hypothesis, at Xk, at most one single-unit agent has a nonempty envy set for o and
that set only contains double-unit agents. Additionally, all double-unit agents have an empty
envy set for o at Xk. Therefore, if o rejects a, then at least qo −wa units of o are tentatively
assigned to agents with a higher priority, which means that µ(Xk+1) is non-wasteful. By
Condition (iii) of Lemma 5, for any object o, all but one single-units agent with a nonempty
envy set for o are rejected and by Condition (i) all double-unit agents with a nonempty
envy-set are rejected. As µ(φ(Xk+1)) is non-wasteful, it is 1-bounded. Finally, by Lemmas
1 and 5, any pair that is eliminated in Round k is not an element of any stable matching
included in Xk, therefore Xk+1 includes all stable matchings by the induction hypothesis.
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By induction, we conclude that XK includes all stable matchings and µ(Xk) is 1-bounded,
size-consistent and non-wasteful. As XK is also complete, φ(A×O) = Xk. If µ(φ(A×O)) is
feasible, it is stable by Proposition 2. As φ(A×O) includes all stable matchings, µ(φ(A×O))

dominates all other stable matchings and is consequently the optimal stable matching. If
µ(φ(A×O)) is not feasible, then by definition it is not stable. However, as φ(A×O) includes
all stable matchings, µ(φ(A×O)) dominates all stable matchings. �

Proof of Lemma 6: Suppose towards a contradiction the existence of an agent two agents
a ∈ Ao(X) and a′ ∈ E(a,o)(X) with wa ≥ wa′ . (a, o) satisfies Condition (i) of Lemma 5 so o

rejects a at X, which contradicts the assumption that X is irreducible. Then a ∈ Ao(X) and
E(a,o)(X) ̸= ∅ implies a ∈ S and E(a,o)(X) ⊆ D.

To complete the proof, suppose – again towards a contradiction – the existence of two or
more distinct single-unit agents in that situation. That is, suppose there exist s, s′ ∈ So(X)

(s ̸= s′) such that E(s,o)(X) ̸= ∅ and E(s′,o)(X) ̸= ∅. Without loss of generality, let s ◃o s
′.

Then (s′, o) satisfies the second part of Condition (i), contradicting again the irreducibility
of X. �

Proof of Lemma 7: If
∑

a∈Ao(X) wa > qo, then by definition there exists s ∈ Ao(X) such
that R(s,o)(X) > qo. As X is irreducible, o does not reject s at X, therefore (s, o) does not
satisfy any of the three conditions of Lemma 5. The fact that it the pair does not satisfy
Condition (ii) directly implies s ∈ S, hence s ∈ So(X). The fact that the pair does not satisfy
Condition (iii) implies that s is the only agent who contests o as his top choice and has a
rejection number larger than the quota. Therefore,

∑
a∈Ao(X) wa = qo + 1, which implies the

first part of the statement.
We also conclude from our above observation that s has the lowest priority for o among

the elements of Ao(X), therefore

ws +
∑

a∈Â(s,o)(X)∩Ao(X)

wa = qo + 1.

Let d ∈ Ao(X) be the agent with the second lowest priority among the elements of Ao. Such
agent exists as

∑
a∈Ao(X) wa = qo + 1, qo ≥ 1 and s ∈ S imply that s is not the only element

of Ao(X). Then
wd +

∑
a∈Â(d,o)(X)∩Ao(X)

wa = qo.

so R(d,o)(X) ≥ qo. Then d ∈ D since (s, o) does not satisfy Condition (iii) of Lemma 5. In
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turn, o does not reject d at X so that pair does not satisfy Condition (ii). We conclude that
E(d,o)(X) = ∅, hence R(d,o)(X) = qo. Finally,

R(s,o)(X) = ws +
∑

a∈Â(s,o)(X)∩Ao(X)

wa +
∑

a∈E(s,o)(X)

wa = qo + 1 +
∑

a∈E(s,o)(X)

wa.

As (s, o) does not satisfy Condition (i), E(s,o)(X) ⊆ D, hence R(s,o)(X) − qo is odd. As
a consequence, (s, o) satisfies Condition (iii) unless there exists s′ ∈ So(X) \ So(X) with
R(s′,o)(X) < qo. Then s′ ◃o d ◃o s, which implies the second and last part of the statement. �

Proof of Lemma 8: Let µ ∈ S be a stable matching such that (d, o) ∈ µ ⊆ X. We begin
by showing that (Â(d,o)(X)∩Ao(X))∪{d} = Ao(µ), that is the agents matched to o at µ are
exactly those who contest o as their top choice at X and have a weakly higher priority than
d. Suppose towards a contradiction the existence of an agent a ∈ Â(d,o)(X)∩Ao(X) such that
a /∈ Ao(µ). As µ ⊆ X, o ≻a oa(µ). Additionally, (d, o) ∈ µ and a ◃o d, therefore a envies d at
µ. µ is consequently not size-consistent, hence not stable since d ∈ D, a contradiction. Then
(Â(d,o)(X) ∩ Ao(X)) ∪ {d} ⊆ Ao(µ). As (d, o) ∈ B∗(X), R(d,o)(X) = qo by definition and as
X is irreducible, E(d,o)(X) = ∅. (Otherwise (d, o) would satisfy Condition (i) of Lemma 5
and o would reject d at X.) Therefore

R(d,o)(X) = wd +
∑

Â(d,o)(X)∩Ao(X)

wa = qo.

If (Â(d,o)(X) ∩ Ao(X)) ∪ {d} ⊂ Ao(µ), then
∑

a∈Ao(µ)
wa > qo, violating feasibility. We

conclude that (Â(d,o)(X) ∩ Ao(X)) ∪ {d} = Ao(µ).
Consider now (a, o′) ∈ P(d,o)(X). If oa(X) ≻a o, then a /∈ (Â(d,o)(X) ∩ Ao(X)) ∪ {d} =

Ao(µ). If on the other hand oa(X) = o, then o ≻a o
′. (a, o′) ∈ µ implies o ≻a o

′ = oa(µ). As
(d, o) ∈ µ and a ◃o d, a envies d, which violates size-consistency. �

Proposition 5 is proved in the main text.

Proof of Lemma 9: We prove each part of the statement in turn. Consider a pair (a, o) ∈ X

such that M(a,o)(X) = 0. Then either oa(X) ≽a o, in which case (a, o) does not constitute a
blocking pair at µ(X), or

qo − (wa − 1)−
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ ≤ 0.
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Notice that Â(a,o)(X) ∩ Ao(X) = Â(a,o)(µ(X)). Therefore∑
a′∈Â(a,o)(µ(X))

wa′ ≥ qo − (wa − 1),

which is equivalent to ∑
a′∈Â(a,o)(µ(X))

wa′ > qo − wa.

It follows that a does not have a wa-unit claim to o at µ(X), hence (a, o) does not constitute
a blocking pair of µ(X). Suppose now in contrast that M(a,o)(X) > 0. Then oa(X) ≻a o and

qo − (wa − 1)−
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ > 0.

By an analogous reasoning to the one above, the latter inequality is equivalent to∑
a′∈Â(a,o)(µ(X))

wa′ ≤ qo − wa.

It follows that a has a wa-unit claim to o at µ(X), hence (a, o) constitutes a blocking pair of
µ(X). Combining our two results, we conclude that (a, o) ∈ X is a blocking pair of µ(X) if
and only if M(a,o)(X) > 0. By definition, there exists (a, o) ∈ X such that M(a,o)(X) > 0

if and only if
∑

o∈O Lo > 0, therefore µ(X) has at least one blocking pair if and only if∑
o∈O Lo > 0, which proves the first part of the statement.
In order to prove the second part of the statement, suppose that Lo(X) > 0 for some

o ∈ O. Then there exists a ∈ A such that M(a,o)(X) = Lo(X) > 0. Then

Lo(X) = qo − (wa − 1)−
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ ,

which is equivalent to

qo −
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ = Lo(X) + (wa − 1). (1)

If Ao(X) ⊆ Â(a,o)(X), that is if all agents who contest o as their top choice have a higher

74



priority than a, then

qo −
∑

a′∈Ao(X)

wa′ = qo −
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ = Lo(X) + (wa − 1) ≥ Lo(X)

and the second part of the statement is satisfied since Ao(X) = Ao(µ(X)) by definition.
Otherwise, there exists â ∈ Ao(X) such that a ◃o â. As o ≻a oa(X), a ∈ E(â,o)(X). We first
consider the left side of (1). By Lemma 6, â ∈ S and â is the only agent in Ao(X) such that
the envy set at X of the pair he forms with o is nonempty. This directly implies that â is the
only agent in Ao(X) who has a lower priority than a for o, therefore Ao(µ(X)) = Ao(X) =

(Â(a,o)(X) ∩ Ao(X)) ∪ {â}. Then∑
a′∈Ao(µ(X))

wa′ = wâ +
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ = 1 +
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′

so
qo −

∑
a′∈Â(a,o)(X)∩Ao(X)

wa′ = qo + 1−
∑

a′∈Ao(µ(X))

wa′ .

We now turn to the right side of (1). Lemma 6 implies that E(â,o)(X) ⊆ D, therefore a ∈ D.
This in turn implies that

Lo(X) + (wa − 1) = Lo(X) + 1.

Combining our last two equations with (1) yields

qo + 1−
∑

a′∈Ao(µ(X))

wa′ = Lo(X) + 1,

hence
qo −

∑
a′∈Ao(µ(X))

wa′ = Lo(X)

and the second part of the statement also holds in this case. �

Proof of Lemma 10: Consider a pair (d, o) ∈ D ×O such that (d, o) ∈ B(X). Then there
exists s ∈ S such that ((d, o), (s, o)) is a bottleneck of X and

∑
a∈Ao(X)wa = qo + 1 and no

agent has a claim to o so Lo(X) = 0. Suppose towards a contradiction that
∑

a∈Ao(µ)
wa ≤

qo − 1. If s ∈ So(µ), then d has a 2-unit claim to o, contradicting the stability of µ. If
s /∈ So(µ), then s has a claim to the unassigned unit of o, again a contradiction.

Consider next a pair (d, o) ∈ D × O such that (d, o) ∈ B∗(X) \ B(X), that is (d, o)

is a phantom bottleneck of X. Then
∑

a∈Ao(X) wa = qo. If
∑

a∈Ao(µ)
wa ≤ qo − 2, the set
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Ao(X) \ Ao(µ) is nonempty and all agents in it have a claim to the two unassigned units of
o so µ is not stable.

Consider next an object o ∈ O such that Lo(X) > 0. Then by Lemma 9,
∑

a∈Ao(X) wa ≤
qo − Lo(X). Then if ∑

a∈Ao(µ)

wa −
∑

a∈Ao(X)

wa < Lo(X),

∑
a∈Ao(µ)

wa < qo and an agent has a claim to o, hence µ is not stable.
Finally, consider an object o ∈ O such that Lo(X) = 0 and o is not involved in a

bottleneck or phantom bottleneck. If
∑

a∈Ao(µ)
wa <

∑
a∈Ao(X) wa, then there exists an agent

in Ao(X) \ Ao(µ) who has a claim to o and µ is not stable. �

Proof of Proposition 6: By Lemma 9, µ(X) does not have any blocking pair if and only
if L(X) = 0. By Lemma 7, µ(X) is feasible if and only if it X does not have any bottleneck.
The first part of the statement immediately follows.

If E(X) > 0 then either there exists o ∈ O such that Eo(X) = ∞ or, for all o ∈ O,

Eo(X) =

{
−1 if there exists d ∈ D such that (d, o) ∈ B∗(X)

Lo(X) otherwise.

In the former case, S ∩ 2X = ∅ by Corollary 3. In the latter case,

E(X) =
∑
o∈O

Eo(X) =

(∑
o∈O

Lo(X)

)
− |B∗(X)| = L(X)− |B∗(X)|,

where the second equality makes use of the fact that Lo(X) = 0 whenever an object o is
involved in either a bottleneck or a phantom bottleneck (Lemma 10). Then by assumption,

L(X)− |B∗(X)| > 0.

Towards a contradiction, suppose the existence of a matching µ ∈ S∩ 2X . On the one hand,

∑
o∈O

 ∑
a∈Ao(µ)

wa −
∑

a∈Ao(X)

wa

 ≥

(∑
o∈O

Lo

)
− |B∗(X)| = L(X)− |B∗(X)|

by Lemma 10. On the other hand, all agents are by definition matched to exactly one object
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at any matching, therefore∑
o∈O

∑
a∈Ao(µ)

wa =
∑
o∈O

∑
a∈Ao(X)

wa =
∑
a∈A

wa.

This implies ∑
o∈O

 ∑
a∈Ao(µ)

wa −
∑

a∈Ao(X)

wa

 = 0.

Combining our last two results yields L(X)− |B∗(X)| ≤ 0, a contradiction. �

Theorem 1 is directly implied by Proposition 7.

Proof of Proposition 7: Let K be the number of rounds that the USM algorithm lasts
and for all k = 1, . . . K, let Xk be the set of pairs that enters Round k. Then X1 = A×O.

If φ(XK) = ∅ or E(φ(XK)) > 0, then the algorithm is in Case 3 in Round K so µ∗
θ =

∅. φ(XK) does not include any stable matching, therefore there does not exist any stable
matching containing all pairs in ZK . As the algorithm ends in Round K, ZK = ∅, which
implies that there does not exist any stable matching.

If φ(XK) ̸= ∅ and E(φ(Xk)) ≤ 0, the algorithm is in Case 1 in Round K since it ends in
that round. Therefore, L(φ(XK)) = |B(φ(XK)| = 0. By Lemma 7, µ(φ(XK) is feasible and
by Lemma 9 it does not contain any blocking pair. Combining these two results, µ(φ(XK)) is
stable. φ(XK) includes all stable matchings that themselves include ZK , therefore µ(φ(XK))

dominates all other stable matchings that include Zk. In addition, any stable matching that
does not include Zk makes at least one agent with a protected pair worse-off, which means
that µ(φ(XK)) is not d-dominated by any stable matching. We conclude that µ∗

θ = µ(φ(XK))

is a d-undominated stable matching. �

Proof of Theorem 2: For any K = 1, 2, . . ., if there exists a matching market where
the set of K-bounded and non-wasteful matchings is empty, then by definition the set of
K−1-bounded and non-wasteful matchings that is also empty in that market. It is therefore
sufficient to show that for any odd positive integer K, there exists a matching market where
the set of K-bounded and non-wasteful matchings is empty. Let K be an odd positive integer
and consider the following example.
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Example 7 (No K-bounded non-wasteful Matching). There are 3K single-unit agents
s1, . . . , sK , ŝ1, . . . , ŝ2K , (K +1)/2 double-unit agent d1, . . . , d(K+1)/2 and two non-null ob-
jects o1 and o2. The preferences, priorities and quotas are

≻s1 : o1, o2, ∅ ≻ŝ1 : o2, o1, ∅ ≻d1 : o1, ∅, o2
... ... ...

≻sK : o1, o2, ∅ ≻ŝ2K : o2, o1, ∅ ≻d(K+1)/2
: o1, ∅, o2

◃o1 : ŝ1, . . . , ŝ2K , d1, . . . , d(K+1)/2, s1, . . . , sK qo1 = 2K

◃o2 : s1, . . . , sK , ŝ1, . . . , ŝ2K , d1, . . . , d(K+1)/2 qo2 = 2K

Towards a contradiction, suppose the existence of a K-bounded and non-wasteful match-
ing µ in this market. First, consider the case where all double-unit agents are matched to o1:
(d1, o1), . . . , (d(K+1)/2, o1) ∈ µ. Towards an inductive argument, suppose that

{(d1, o1), . . . , (d(K+1)/2, o1), (ŝ
1, o1), . . . , (ŝ

K , o1), (s
1, o2), . . . , (s

K , o2)} ⊆ µ,

where 0 ≤ n ≤ K − 1, ŝ1, . . . , ŝK are n distinct elements of {ŝ1, . . . , ŝ2K} and s1, . . . , sK are
n distinct elements of {s1, . . . , sK}. In words, at least n agents in {ŝ1, . . . , ŝ2K} are matched
to o1 (their second preference) and at least n agents in {s1, . . . , sK} are matched to o2 (their
second preference). Then K+1 units of o1 are assigned to double-unit agents and n units are
assigned to ŝ1, . . . , ŝK . As µ is feasible by assumption, at most K − (n+ 1) units of o1 may
be assigned to the K −n agents in {s1, . . . , sK} \ {s1, . . . , sK}. Consequently, there exists an
agent sK+1 ∈ {s1, . . . , sK} \ {s1, . . . , sK} who is not matched to o1. At most K − 1 units of
o2 may be assigned to agents who have a higher priority than sK+1 for o2, therefore if sK+1 is
matched to the null object, he envies at least K+1 units of o2, contradicting the assumption
that µ is K-bounded. sK+1 is then necessarily matched to o2 ((sK+1, o2) ∈ µ). In turn, n+1

units of o2 are assigned to s1, . . . , sK , sK+1 and by feasibility at most 2K− (n+1) units may
be assigned to the 2K − n agents in {ŝ1, . . . , ŝ2K} \ {ŝ1, . . . , ŝK}. Consequently, there exists
an agent ŝK+1 ∈ {ŝ1, . . . , ŝ2K} \ {ŝ1, . . . , ŝK} who is not matched to o2. If ŝK+1 is matched
to the null object, he envies the K + 1 units of o1 assigned to the double-unit agents and µ

is not K-bounded. ŝK+1 is therefore matched to o1 ((ŝK+1, o1) ∈ µ). We conclude that

{(d1, o1), . . . , (d(K+1)/2, o1), (ŝ
1, o1), . . . , (ŝ

K , o1), (ŝ
K+1, o1), (s

1, o2), . . . , (s
K , o2), (s

K+1, o2)} ⊆ µ.

By induction, at least K agents in {ŝ1, . . . , ŝ2K} are matched to o1. Then K units of o1 are
assigned to these agents and K + 1 units are assigned to the double-unit agents. µ is not
feasible as a consequence, a contradiction.

78



It remains to show that a contradiction also arises in the case where for some i =

1, . . . , (K + 1)/2, di is not matched to o1. If di is matched to o2, he envies at least two
unassigned units of the null object, contradicting the assumption that µ is non-wasteful.
Therefore, di is matched to the null object: (di, ∅) ∈ µ. If none of the agents ŝ1, . . . , ŝ2K are
matched to o1, then only double-unit agents may be matched to o1 and have a higher priority
than di. As there are (K − 1)/2 double-unit agents other than di, at most K − 1 units of
o1 are assigned to agents with a higher priority than di. Consequently, di envies at least
K + 1 units of o1, contradicting the assumption than µ is K-bounded. Then there exists an
agent ŝ0 ∈ {ŝ1, . . . , ŝ2K} who is matched to o1: (ŝ0, o1) ∈ µ. Towards an inductive argument,
suppose that

{(di, ∅), (ŝ0, o1), (ŝ1, o1), . . . , (ŝK , o1), (s1, o2), . . . , (sK , o2)} ∈ µ,

where 0 ≤ n ≤ K−1, ŝ0, ŝ1, . . . , ŝK are n+1 distinct elements of {ŝ1, . . . , ŝ2K} and s1, . . . , sK

are n distinct elements of {s1, . . . , sK}. As at least n+1 agents out of ŝ1, . . . , s2K are matched
to o1, at most 2K − (n + 1) of them are matched to o2. Additionally, no double-unit agent
is matched to o2 as he would envy at least two units of the null object, contradicting the
assumption that µ is non-wasteful. If exactly n agents out of s1, . . . , sK are matched to o2,
then at most 2K−(n+1)+n = 2K−1 units of o2 are assigned altogether. It directly follows
that at least one unit of o2 is unassigned. As ŝ0, ŝ1, . . . , ŝK envy that unit, µ is wasteful, a
contradiction. There consequently exists an agent sK+1 ∈ {s1, . . . , sK} \ {s1, . . . , sK} who
is matched to o2: ((sK+1, o2) ∈ µ). In turn, the fact that at least n + 1 agents out of
s1, . . . , sK are matched to o2 implies that at most K − (n + 1) of them are matched to o1.
Additionally, at most (K−1)/2 double-unit agents are matched to o1 since di is not, therefore
at most K − 1 units of o1 are assigned to them. If exactly n + 1 agents out of ŝ1, . . . , ŝ2K
are matched to o1, then at most K − (n + 1) + K − 1 + n + 1 = 2K − 1 units of o1 are
assigned altogether. This directly implies that at least one unit of o1 is unassigned. As
s1, . . . , sK , sK+1 envy that unit, µ is wasteful, a contradiction. There consequently exists an
agent ŝK+1 ∈ {ŝ1, . . . , ŝ2K} \ {ŝ0, ŝ1, . . . , ŝK} who is matched to o1: ((ŝK+1, o1) ∈ µ). We
conclude that

{(di, ∅), (ŝ0, o1), (ŝ1, o1), . . . , (ŝK , o1), (ŝK+1, o1), (s
1, o2), . . . , (s

K , o2), (s
K+1, o2)} ∈ µ.

By induction, at least K + 1 agents out of ŝ1, . . . , ŝ2K are matched to o1, which directly
implies that at most K − 1 of them are matched to o2. As none of the double-unit agents
are matched to o2, it follows that at most 2K − 1 units of o2 are assigned altogether, hence
at least one is unassigned. Those of ŝ1, . . . , ŝ2K who are matched to o1 envy that unit, hence
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µ is wasteful, a contradiction. �

Proof of Proposition 8: Let K be the number of rounds that the PFDA algorithm lasts
and for all k = 1, . . . , K, let Xk be the set of pairs that enters Round k. Then X1 = A× O

and µ(XK) = µPFDA. Trivially, µ(X1) = µ(A×O) is 1-bounded and such that E(a,o)(X1) = ∅
for all (a, o) ∈ X1 = A×O. Towards an inductive argument, suppose that this is also the case
for some k = 1, . . . , K−1. That is, µ(Xk) is 1-bounded and E(a,o)(Xk) = ∅. By construction,
if an object has rejected an agent in some Round j ≤ k, then all agents with a lower priority
who propose to that object in Round k are also rejected, therefore E(a,o)(Xk+1) = ∅ for all
(a, o) ∈ Xk+1 such that a ∈ Ao(Xk+1). Then any claim at µk+1 involves unassigned units.
By the induction hypothesis, if o has rejected at least one agent up to Round k − 1, then∑

a∈Ao(Xk)
wa ≥ qo − 1. Then either o has not rejected any object up to Round k − 1 or∑

a∈Ao(Xk)
wa ≥ qo−1. In either case, o does not reject any agent in Round k unless the total

size of agents with a higher priority is at least qo−1. It follows that
∑

a∈Ao(Xk+1)
wa ≥ qo−1,

hence agents have a claim to at most one unit of any object at µ(Xk+1), which means that
the latter is 1-bounded.

By induction, µPFDA = µ(XK) is 1-bounded and such that E(a,o)(XK) = ∅ for all (a, o) ∈
XK . The latter implies that µPFDA is size-consistent. As the algorithm ends in Round K, no
agent is rejected so µPFDA is feasible. �

Proof of Proposition 9: (If) Let µ be a feasible, size-consistent and non-wasteful matching.
Suppose towards a contradiction the existence of a strong blocking pair (a, o) ∈ A×O of µ.
Then o ≻a oa(µ). If a ∈ S, then

∑
a′∈Â(a,o)(µ)

wa′ ≤ qo−1. If in addition
∑

a′∈Ao(µ)
wa′ ≤ qo−1,

then µ is wasteful. Otherwise, there exists a′ ∈ Ao(µ) such that a envies a′ at µ, hence
µ is not size-consistent. If a ∈ D, then

∑
a′∈Â(a,o)(µ)∪So(µ)

wa′ ≤ qo − 2. If in addition∑
a′∈Ao(µ)

wa′ ≤ qo − 2, then µ is wasteful. Otherwise, there exists d ∈ Do(µ) such that a

envies d at µ, hence µ is not size-consistent. We conclude that in all cases µ is either not
size-consistent or wasteful, a contradiction, �

(Only If) Let µ be a size-stable matching. For any (s, o) ∈ S ×O, (s, o) is not a strong
blocking pair so either os(µ) ≽s o or

∑
a∈Â(s,o)(µ)

wa = qo. In both cases, s does not have a
claim to an unassigned unit at o and does not envy any agent matched to o at µ. For any
(d, o) ∈ D × O, (d, o) is not a strong blocking pair of µ so either od(µ) ≽d o and d does
not have any claim to o at µ or

∑
a∈Â(s,o)(µ)∪So(µ)

wa ≥ qo − 1. In the latter case, d does not
have a claim to two unassigned units of o since at most one unit of this object is unassigned.
In addition,

∑
a∈Ao(µ)

wa ≤ qo as µ is feasible by assumption. Consequently, there does not
exists d′ ∈ Do(µ) such that d ◃ d′, that is d does not envy any double-unit agent at µ. We
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conclude that µ is size-consistent and non-wasteful in all cases. �

Proof of Proposition 10: Let K be the number of rounds that the SDDA algorithm lasts
and for all k = 1, . . . , K, let Xk be the set of pairs that enters Round k. Then X1 = A× O

and µ(XK) = µSDDA. Trivially, µ(X1) = µ(A × O) is size-consistent, non-wasteful and not
dominated by any size-stable matching. Towards an inductive argument, suppose that for
some k = 1, . . . , K − 1 and for all j = 1, . . . , k µ(Xj) is size-consistent, non-wasteful and not
dominated by any size-stable matching.

For any X ∈ 2A×O and any (a, o) ∈ X, let us denote by Â∗
(a,o)(X) ≡ {a′ ∈ Ao(X) | a′ ◃∗o a}

the set of agents who contest o at X and have a higher size-disjoint priority for it than a.
Consider now a pair (a, o) ∈ Xk such that o rejects a in Round k. Such pair exists since
k < K. Without loss of generality, let a be the agent rejected by o in Round k with the
highest size-disjoint priority. Then

∑
a′∈Â∗

(a,o)
∩Ao(Xk)

wa′ > qo − wa. If a ∈ S, all agents in
Â∗

(a,o) ∩Ao(Xk) are single-unit agents since by definition a does not have a lower size-disjoint
priority than any double-unit agent. Then all units of o are tentatively assigned to single-
unit agents with a higher priority than a so the latter does not have a claim to o at Xk+1.
The same is true for any agent that o has rejected beforehand. If a ∈ D, at least qo − 1

units of o are tentatively assigned to agents with a higher priority, therefore a has at most
a 1-unit claim to o at Xk+1. As all single-unit agents have a higher size-disjoint priority
than a, o has not rejected any of them so no single-unit agent has a claim to o. It follows
that µ(Xk+1) is size-consistent and non-wasteful. In addition, all rejections are dictated by
feasibility, therefore any size-stable matching that makes some agent better-off than µ(Xk+1)

also makes an agent worse-off. µ(Xk+1) is as a consequence not dominated by any size-stable
matching.

By induction, we conclude that µ(XK) is size-consistent, non-wasteful and not dominated
by any size-stable matching. As the algorithm ends in Round K, all proposals are accepted,
which means that µ(XK) is also feasible, hence it is an undominated size-stable matching. �

Proof of Lemma 11: Let (a, o) ∈ X be a pair such that o rejects a at X and let µ ⊆ X be
a feasible matching that contains (a, o). Consider first the case where a ∈ D. Then

R̃(a,o)(X) = wa +
∑

a′∈Â(a,o)(X)∩Ao(X)

wa′ > qo.

As µ is feasible, there exists a′ ∈ Â(a,o)(X) ∩ Ao(X) such that o ≻a′ oa′(µ). Then a′ envies a

at µ so µ is not size-consistent. By Proposition 9, it is not size-stable.
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Consider next the case where a ∈ S. Then

R̃(a,o)(X) = wa +
∑

s∈Ŝ(a,o)(X)∩So(X)

ws +
∑

d∈D̃(a,o)(X)

wd > qo.

As agents in D̃(a,o)(X) only contest o at X, they are matched to o at µ. Therefore, as µ is
feasible, there exists s ∈ Ŝ(a,o)(X) ∩ So(X) such that o ≻s os(µ). Then s′ envies s at µ so µ

is not size-consistent. By Proposition 9, it is not size-stable. �

Proof of Lemma 12: Lemma 12 arises as the combination of several results that are omitted
in the main text. We present them one by one and then derive the desired result. We first
introduce some useful notation and terminology. For any agent a and set of pairs X, let
oa(X) ≡ o ∈ Oa(X) such that o′ ≽a o for all o′ ∈ Oa(X) be a’s bottom choice at X, that
is a’s least favorite object among those he contests. An agent does not have a bottom choice
if he does not contest any object. The concept is completely analogous to the agent’s top
choice. We let K be the number of steps of the p-TDBU algorithm applied to the full set
of pairs A × O and denote by Xk the set of pairs considered in Step k = 1, . . . , K. Then
Xk ⊆ Xj for any k ≥ j, X1 = A× O, Xk is complete for all k < K and ϕ(A× O) = XK if
Xk is complete and ϕ(A×O) = ∅ otherwise.

Claim 1. ϕ(A× O) is complete and for every agent a, oa(ϕ(A× O)) is the object a prefers
among those that give him a guarantee in the p-TDBU algorithm.

Proof of Claim 1: Let a be any agent and let o be the object he prefers among those that give
him a guarantee throughout the p-TDBU algorithm (such object exists as each agent receives
at least a guarantee from the null object). Let k = 1, . . . , K be the first step where o gives a a
guarantee. For any o′ ∈ O such that o ≻a o

′, (a, o′) /∈ Xk+1, hence (a, o′) /∈ XK . In addition,
G(a,o)(X

k) ≤ qo. By Lemma 3, for any j = k, . . . ,K, G(a,o)(X
j) ≤ G(a,o)(X

k) ≤ qo and by
construction R̃(a,o)(X

j) ≤ G(a,o)(X
j) ≤ qo so o does not reject a at Xj. By assumption, a does

not get a guarantee from any object he prefers to o, therefore (a, o) ∈ XK and o = o(XK).
This implies the first part of the statement as a contests at least one object. �

Claim 1 provides some basic properties of ϕ(A× O). Our next step is to show that this
set contains a size-stable matching. For this purpose, we define an alternative priority profile
◃# as follows. For all o ∈ O, the alternative priority relation ◃# is such that for any a, a′ ∈ A

with a ◃o a
′:

a′ ◃#o a if wa > wa′ and
∑

â∈Â(a,o)(ϕ(A×O))wâ > qo.

a′ ◃#o a otherwise.
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The alternative priority profile is the |O|-tuple ◃# = {◃#o }o∈O containing the alternative
priority relation of all objects. Double-unit agent get to keep their priority over single-unit
one for all objects that they contest and give them a guarantee or that they do not contest but
would give them a guarantee if they did. For all other objects, they lose their priority to single-
unit agents. We let µ# be the matching produced by the Deferred Acceptance algorithm when
applied to the alternative market ⟨A,O,≻,◃#,w,q⟩. Let N be the number of rounds of the
DA algorithm applied to this alternative market and denote by Xk the set of pairs considered
in Round k = 1, . . . , N . Then Xk ⊆ Xj for any k ≥ j and X1 = A× O. As the null object
never rejects any proposal, Xk is complete for all k = 1, . . . N and µ# = µ(XN). We denote
by Â#

(a,o)(X) ≡ {a′ ∈ Ao(X) | a′ ◃#o a} the set of agents who contest o at X and have a higher
alternative priority than a. We now present three important properties of µ#.

Claim 2. For all a ∈ A, oa(µ#) ≽a oa(ϕ(A×O)).

Proof of Claim 2: Suppose towards a contradiction the existence of an agent a such that
that o ≡ oa(ϕ(A × O)) ≻a oa. For notational convenience, let o ≡ oa(ϕ(A × O)). There is
a Round k = 1, . . . K − 1 of the Deferred Acceptance algorithm where o rejects a, therefore∑

a′∈Â#
(a,o)

(Xk)∩Ao(Xk)
wa′ > qo − wa. By Claim 1, o gives a a guarantee in the p-TDBU

algorithm, therefore ∑
a′∈Â(a,o)(ϕ(A×O))

wa′ ≤ qo − wa.

It follows that for any a′ ∈ A, a ◃#o a′ if and only if a ◃o a
′, which means that Â#

(a,o)(Xk) =

Â(a,o)(Xk). Then ∑
a′∈Â(a,o)(Xk)∩Ao(Xk)

wa′ > qo − wa.

Combining our last two results implies the existence of an agent

â ∈ (Â(a,o)(Xk) ∩ Ao(Xk)) \ Â(a,o)(ϕ(A×O)).

Then â◃oa and â does not contest o at ϕ(A×O). This means that he has received a guarantee
for an object he prefers to o in the p-TDBU algorithm, hence oâ(ϕ(A×O)) ≻â o by Claim 1.
As â proposes to o in Round k, uloâ(ϕ(A×O)) rejects â in some Round j < k. By induction,
there exists an agent who proposes in Round 1 to an object he ranks lower than all objects
he contests at ϕ(A× O), a contradiction since all agents propose to their first preference in
Round 1. �

Claim 2 establishes that all agents are matched at µ# to an object they like at least as
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much as their bottom choice at ϕ(A×O). We next show that µ# is a stable matching of the
alternative market.

Claim 3. For any a ∈ A and o ∈ O, if o ≻a oa(µ
#), then

∑
a′∈Â#

(a,o)
(µ#) wa′ > qo − wa.

Proof of Claim 3: Suppose towards a contradiction the existence of an agent a and an
object o such that o ≻a oa(µ

#) and
∑

a′∈Â#
(a,o)

(µ#) wa′ ≤ qo − wa. Without loss of generality,
let a be the agent in that situation with the highest priority for o. As µ# = µ(XN) by
definition, ∑

a′∈Â#
(a,o)

(XN )∩Ao(XN )

wa′ ≤ qo − wa.

As o ≻a oa(µ
#), there exists a Round k = 1, . . . , N − 1 of the Deferred Acceptance algorithm

where o rejects a. Then ∑
a′∈Â#

(a,o)
(Xk)∩Ao(Xk)

wa′ > qo − wa.

Consequently, there exists a Round j = k, . . . , N − 1 such that∑
a′∈Â#

(a,o)
(Xj)∩Ao(Xj)

wa′ > qo − wa and
∑

a′∈Â#
(a,o)

(Xj+1)∩Ao(Xj+1)

wa′ ≤ qo − wa.

Then there exists an agent

â ∈ (Â#
(a,o)(Xj) ∩ Ao(Xj)) \ (Â#

(a,o)(Xj+1) ∩ Ao(Xj+1).

â is such that â ◃#o a and o ≻â oa(µ
#). In addition,∑

a′∈Â#
(â,o)

(µ#)

wa′ ≤
∑

a′∈Â#
(a,o)

(µ#)

wa′ ≤ qo − wa.

If wa ≥ wâ, this directly implies
∑

a′∈Â#
(â,o)

(µ#) wa′ ≤ qo − wâ, a contradiction. Otherwise,
a ∈ S and â ∈ D. As â ◃#o a, oâ(ϕ(A × O)) ≽â o. Then by Claim 2, oa(µ

#) ≽â o, a
contradiction. �

Claim 3 shows that µ# does not have any blocking pair in the alternative market ⟨A,O,≻
,◃#,w,q⟩, which means that it is stable since the Deferred Acceptance produces by construc-
tion a feasible matching. In the original market ⟨A,O,≻,◃,w,q⟩, µ# may have blocking
pairs, however we show next that it does not have any strong one.

Claim 4. µ# is size-stable.
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Proof of Claim 4: Consider an agent a and an object o such that o ≻a oa(µ
#). By Claim

3,
∑

a′∈Â#
(a,o)

(µ#) wa′ > qo − wa.
Consider first the case where a ∈ D. For any â ∈ A such that â ◃#o a, either ◃̂od or ∈̂S,

which implies that Â#
(a,o)(µ

#) ⊆ (Â(a,o)(µ
#) ∪ So(µ

#)). Then

∑
a′∈Â(a,o)(µ

#)∪So(µ#)

wa′ ≥
∑

a′∈Â#
(a,o)

(µ#)

wa′ > qo − wa

so (a, o) is not a strong blocking pair of µ#.
Consider next the case where a ∈ S. For any â ∈ A such that â ◃#o a, wâ ≥ wa, hence

â ◃o a. Therefore, Â#
(a,o)(µ

#) ⊆ Â(a,o)(µ
#) and

∑
a′∈Â(a,o)(µ

#)

wa′ ≥
∑

a′∈Â#
(a,o)

(µ#)

wa′ > qo − wa.

(a, o) is not a (strong) blocking pair of µ#.
We conclude that µ# does not have any strong blocking pair. As the Deferred Acceptance

algorithm stops when none of the agents are rejected, µ# is feasible, which means it is size-
stable. �

We have now established that µ# is size-stable. The next claim shows that µ# is included
in ϕ(A×O), which implies that the latter set includes at least one size-stable matching.

Claim 5. µ# ⊆ ϕ(A×O).

Proof of Claim 5: Recall that X1, . . . , XK are the set of pairs considered throughout the
p-TDBU algorithm. Trivially, µ# ⊆ X1 = A× O. Towards an inductive argument, suppose
that µ# ⊆ Xk for some k = 1, . . . , K − 1. Let (a, o) ∈ Xk+1 \Xk. Then either there exists
o′ such that o′ ≻a o and o′ gives a a guarantee at Xk or o rejects a at Xk.

In the former case, oa(ϕ(A×O)) ≽a o
′ ≻a o by Claim 1 so (a, o) /∈ µ# by Claim 2. In the

latter case, (a, o) is not an element of any size-stable matching included in Xk by Lemma 11.
As µ# is size-stable by Claim 4 and µ# ⊆ Xk by the induction hypothesis, (a, o) /∈ µ#.

We conclude that µ# ⊆ Xk+1. By induction, µ# ⊆ XK . By Claim 1, ϕ(A × O) is
complete, therefore µ# ⊆ XK = ϕ(A×O). �

The conjunction of Claims 4 and 5 implies that ϕ(A×O) contains at least one size-stable
matching. Our next two results allow inferring that it also contains a d-undominated one.
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Claim 6. If an object o gives a single-unit agent s a guarantee at X ∈ X, then for any
µ ∈ S̃ ∩ 2X , os(µ) ≽s o.

Proof of Claim 6: Let s ∈ S and o ∈ O be such that o gives s a guarantee in Round k =

1, . . . , K of the p-TDBU algorithm. Then G(s,o)(X
k) ≤ qo, therefore

∑
a∈Â(s,o)(X

k)wa ≤ qo−1.
For any matching µ ⊆ Xi,

∑
a∈Â(a,o)(µ)

wa ≤ qo − 1, therefore o ≻s os(µ) implies that (s, o) is
a strong blocking pair and µ is not size-stable. �

Claim 6 shows that when it comes to single-unit agents, guarantees allow eliminating
agent-object pairs that are not in any size-stable matching included in the current set of
pairs. It is only when guarantees are given to double-unit agents that some size-stable
matchings may be lost. Our next and last result builds upon Claim 6 to show that µ# is
only d-dominated by size-stable matchings included in ϕ(A×O).

Claim 7. Let µ, µ′ ∈ S̃ be two size-stable matchings such that µ dominates µ′ and µ′ ∈
ϕ(A×O). Then µ ⊆ ϕ(A×O).

Proof of Claim 7: Let µ, µ′ ∈ S̃ be two size-stable matchings such that µ dominates µ′ and
µ′ ∈ ϕ(A × O). Trivially, µ ⊆ X1 = A × O. Suppose towards an inductive argument that
µ ⊆ Xk for some k = 1, . . . , K − 1. Consider an agent-object pair (a, o) ∈ Xk+1 \Xk. Either
a receives a guarantee at Xk from an object o′ that he prefers to o or o rejects a at Xk.

In the former case, if a ∈ S then by Claim 6 (a, o) is not an element of any size-stable
matching included in Xk, hence (a, o) /∈ µ. If a ∈ D, then oa(ϕ(A × O)) ≽a o′ ≻a o by
Claim 1. Since µ′ ⊆ ϕ(A×O), oa(µ′) ≽a oa(ϕ(A×O)) so oa(µ

′) ≻a o. As µ d-dominates µ′,
oa(µ) ≽a oa(µ

′) so oa(µ) ≻a o and (a, o) /∈ µ.
In the latter case, by Lemma 11 (a, o) is not an element of any size-stable matching

included in Xk, hence (a, o) /∈ µ. We conclude that µ ⊆ Xk+1, hence by induction µ ⊆
XK = ϕ(A×O). �

As µ# a size-stable matching included in ϕ(A×O) by Claims 4 and 5, a direct consequence
of Claim 6 is that for all size-stable matchings µ ∈ S̃ that d-dominate µ#, µ ⊆ ϕ(A × O).
We are now in a position to prove the main statement. By Claims 4 and 5, µ# is a size-
stable matching included in ϕ(A × O). If it is d-undominated, then the proof is complete.
Otherwise, there exists a d-undominated size-stable matching µ that d-dominates µ#. By
Claim 7, µ ⊆ ϕ(A×O). �

Proof of Proposition 11: We begin with the first part of the statement and show in turn
that µ(ϕ(A×O)) is size-consistent and non-wasteful.
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(Size-Stable) By Lemma 12, ϕ(A×O) is complete since it includes a size-stable matching.
Let K be the number of steps that the p-TDBU lasts when applied to A × O and for all
k = 1, . . . , K, let Xk be the set of agent-object pairs that enters step k. Then X1 = A × O

and XK = ϕ(A× O). Suppose towards a contradiction the existence of two agents a, ã ∈ A

such that wa ≤ wã and a envies ã at µ(XK) = µ(ϕ(A×O)). For notational convenience, let
o ≡ oã(X

K) and without loss of generaility, let a be the agent with the highest priority for
o among those who have a weakly smaller size than ã and envy him at µ(XK). Then a ◃o ã

and o ≻a oa(X
K). By Claim 1, a does not receive a guarantee from any object he prefers to

oa(X
K) throughout the p-TDBU algorithm. Therefore, the fact that a does not contest o at

XK implies the existence of a Round k = 1, . . . , K − 1 where o p-rejects a. It follows that
R̃(a,o)(X

k) > qo. Whether a is a single- or a double-unit agent, this implies∑
a′∈Â(a,o)(X

k)∩Ao(Xk)

wa′ > qo − wa.

Consider first the case where ã ∈ D. In Round K, o does not reject ã, therefore

R̃(ã,o)(X
K) = wã +

∑
a′∈Â(ã,o)(X

K)∩Ao(XK)

wa′ ≤ qo.

As a ◃o ã and wa ≤ wã, this implies ∑
a′∈Â(a,o)(X

K)∩Ao(XK)

wa′ ≤ qo − wa.

Then there exists an agent â ∈ (Â(a,o)(X
k) ∩ Ao(X

k)) \ (Â(a,o)(X
K) ∩ Ao(X

K)). As â ∈
Â(a,o)(X

k), â ◃o a ◃o ã. In addition, â contests o at Xk as his top choice but does not contest
o at XK , thus o ≻â oâ(X

K). We conclude that â envies ã at µ(XK) = µ(ϕ(A × O)) and
has a weakly smaller size than him, contradicting the assumption that a is the agent in that
situation with the highest priority for o.

Consider next the case where ã ∈ S. Since wa ≤ wã, a ∈ S. In that case, R̃(a,o)(X
k) > qo

implies ∑
s∈Ŝ(a,o)(X

k)∩So(Xk)

ws +
∑

d∈D̃(a,o)(X
k)

wd > qo − wa = qo − 1.

In Round K, o does not reject ã, therefore R̃(ã,o)(X
k) ≤ qo, which implies∑

s∈Ŝ(ã,o)(X
K)∩So(XK)

ws +
∑

d∈D̃(ã,o)(X
K)

wd ≤ qo − wã = qo − 1.
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As a ◃o ã, this in turn implies∑
s∈Ŝ(a,o)(X

K)∩So(XK)

ws +
∑

d∈D̃(a,o)(X
K)

wd ≤ qo − 1.

Agents in D̃(a,o)(X
k) exclusively contest o at Xk. As XK ⊆ Xk and XK is complete, these

agents also exclusively contest o at XK , therefore D̃(a,o)(X
k) ⊆ D̃(a,o)(X

K). This implies the
existence of an agent â ∈ (Ŝ(a,o)(X

k) ∩ So(X
k)) \ (Ŝ(a,o)(X

K) ∩ So(X
K)). As â ∈ Ŝ(a,o)(X

k),
â ◃o a ◃o ã and â ∈ S. In addition, â contests o at Xk as his top choice but does not contest
o at XK , thus o ≻â oâ(X

K). We conclude that â envies ã at µ(XK) = µ(ϕ(A × O)) and
has a weakly smaller size than him, contradicting the assumption that a is the agent in that
situation with the highest priority for o. �
(Non-Wasteful) The proof is almost analogous to the one above. Suppose towards a con-
tradiction the existence of an agent a ∈ A and an object o ∈ O such that o ≻a oa(X

K) and∑
a′∈Ao(XK) wa′ ≤ qo − wa. That is, a has a claim to wa unassigned units of o. Without

loss of generality, let a be the agent in that situation with the highest priority. Formally,
for any â ∈ A, o ≻â oâ(X

K) and
∑

a′∈Ao(XK) wa′ ≤ qo − wâ implies a D â. By Claim 1, a
does not receive a guarantee from any object he prefers to oa(X

K) throughout the p-TDBU
algorithm. Therefore, the fact that a does not contest o at XK implies the existence of a
Round k = 1, . . . , K − 1 where o p-rejects a. It follows that R̃(a,o)(X

k) > qo.
Consider first the case where a ∈ D. Then R̃(a,o)(X

k) > qo implies∑
a′∈Â(a,o)(X

k)∩Ao(Xk)

wa′ > qo − wa.

Then there exists â ∈ (Â(a,o)(X
k) ∩ Ao(X

k)) \ Ao(X
K). Since â ∈ Â(a,o)(X

k), â ◃o a. In
addition, a ∈ D implies wâ ≤ wa, therefore

∑
a′∈Ao(XK) wa′ ≤ qo−wâ. â has a higher priority

than a for o and a claim to wâ unassigned units of that object, a contradiction.
Consider next the case where a ∈ S. In that case, R̃(a,o)(X

k) > qo implies∑
s∈Ŝ(a,o)(X

k)∩So(Xk)

ws +
∑

d∈D̃(a,o)(X
k)

wd > qo − wa.

As XK ⊆ Xk and XK is complete, agents in D̃(a,o)(X
k) exclusively contest o at XK , therefore

D̃(a,o)(X
k) ⊆ Ao(X

K). Then there exists â ∈ (Ŝ(a,o)(X
k) ∩ So(X

k)) \ Ao(X
K). Since â ∈

Ŝ(a,o)(X
k), â ◃o a and wâ = wa = 1 so

∑
a′∈Ao(XK) wa′ ≤ qo −wâ. â has a higher priority than

a for o and a claim to wâ unassigned units of that object, a contradiction. �

88



It remains to show that the second part of the statement holds. The “only if” part is
trivial as size-stable matchings are by definition feasible. To prove the “if” part, suppose that
µ(ϕ(A × O)) is feasible. By construction, µ(ϕ(A × O)) dominates – hence it d-dominates –
all other matchings included in ϕ(A × O). Therefore, no matching other than µ(ϕ(A × O))

is a d-undominated size-stable matching included in ϕ(A × O). Then µ(ϕ(A × O)) is a
d-undominated size-stable matching by Lemma 12. �

Proof of Lemma 13: The result is trivial if there does not exist any size-stable matching
included in X that contains (d, o), therefore we focus on the case where such a matching
exists. Let µ be such matching, that is µ ∈ S̃ ∩ 2X and (d, o) ∈ µ.

Suppose towards a contradiction the existence of a pair (a, o′) ∈ P(d,o) ∩ µ. By Definition
8, a Do d and o ≻a o′. As (d, o) ∈ µ, a ̸= d so a ◃o d. Then a envies d at µ since
od(µ) = o ≻a o′ = oa(µ). As d ∈ D, wa ≤ wd and µ is not size-consistent, a contradiction.
We conclude that µ ⊆ X \ P̃(d,o)(X), which directly implies that X \ P̃(d,o)(X) is complete.

We next let X \ P̃(d,o)(X) enter the p-TDBU algorithm. Let K be the number of steps of
the algorithm and let Xk denote the set of agent-object pairs that enters Step k = 1, . . . , K.
Then X1 = X \ P̃(d,o)(X), Xk is complete for all k = 1, . . . , K − 1 and

ϕ(X \ P̃(d,o)(X)) =

{
XK if XK is complete
∅ otherwise.

We have established that µ ⊆ X1. Towards an inductive argument, suppose that µ ⊆ Xk

for some k = 1, . . . , K − 1. Consider a pair (a, o) ∈ Xk+1 \ Xk. Then o p-rejects a at Xk.
By Lemma 11, (a, o) /∈ µ since µ ∈ S̃ ∩ 2X

k . It follows that µ ⊆ Xk+1, hence by induction
µ ⊆ XK . This in turn implies that XK is complete, hence µ ⊆ XK = ϕ(X \ P̃(d,o)(X)). �

Proof of Theorem 3: Let K be the number of rounds that the d-USSM algorithm lasts
and for all k = 1, . . . , K, let Xk be the set of pairs that enters Round k. Then X1 = A× O

and µ̃∗
θ = µ(ϕ(XK)). We proceed by induction with the following hypothesis. For some

k = 1, . . . , K − 1 and for some j = 1, . . . , k, if ϕ(Xj) ̸= ∅, then µ(ϕ(Xj)) is size-consistent,
non-wasteful and not d-dominated by any size-stable matching. µ(ϕ(X1)) = µ(ϕ(A× O)) is
clearly size-consistent and non-wasteful. By Lemma 12, it is not d-dominated by any size-
stable matching so our hypothesis holds for X1. It remains to show that it holds for Xk+1. In
Round k, the algorithm is in either Case 2 or Case 3 (as k < K) so a set Xk+1 is constructed.
If ϕ(Xk+1) = ∅, the induction hypothesis holds trivially, hence we focus on the case where
ϕ(Xk+1) ̸= ∅, which implies ϕ(Xk+1) ∈ I.
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If the algorithm is in Case 2 in Round k, then Xk+1 is constructed by protecting the
pair zk. Let d ∈ D and o ∈ O be the agent and object in this pair, that is (d, o) = zk. If
By Lemma 13, ϕ(Xk+1) contains all size stable matchings included in ϕ(Xk) that contain
(d, o). Any other matching included in ϕ(Xk) makes d worse-off, hence µ(ϕ(Xk+1)) is not
d-dominated by any size-stable matching. By definition, P̃(d,o)(ϕ(Xk)) does not contain any
pair where the object is the agent’s top choice, hence µ(Xk+1) = µ(ϕ(Xk)) is size-consistent
and non-wasteful by the induction hypothesis.

If the algorithm is in Case 3 in Round k, then Zk+1 is constructed by removing the pair
zi, which is the element of Zk that was protected, from Zk. Equivalently, Zk+1 = Zi. This
pair exists since Zk ̸= ∅ by Lemma 12. We let d ∈ D and o ∈ O be the agent and the
object in this pair, that is (d, o) = zi. Xk+1 is constructed by removing (d, o) from ϕ(Xi).
(ϕ(Xi) ̸= ∅ since a pair was protected in Round i.) By construction, (d, o) is a candidate of
ϕ(Xi), therefore d contests o as his top choice but also contests other objects. His demand
does not count towards single-unit agents with a lower priority, therefore there exists at least
one single-unit agent who is not tentatively assigned any unit of o. If a single-unit agent
prefers o to his top choice at ϕ(Xi), there exist at least two such agents. Then (d, o) does
not have a claim to any unassigned unit at µ(Xk+1) and, as by definition he has a lower
priority than all other double-unit agent contesting o as their to choice at ϕ(Xi). It follows
that µ(Xk+1) is size-consistent and non-wasteful since ϕ(Xi) is by the induction hypothesis.

We have established that µ(ϕ(Xk+1)) is not d-dominated by any size-stable matching
and that µ(Xk+1) is size-consistent and non-wasteful. It remains to show that µ(ϕ(Xk+1))

is also size-consistent and non-wasteful. Throughout the p-TDBU algorithm, an object only
rejects an agent if it also reject all agents with a lower priority and a weakly larger and all
of its units are tentatively assigned to agents with a higher priority, therefore µ(ϕ(Xk+1)) is
size-consistent and non-wasteful.

By induction, this means that µ(ϕ(XK)) is size-consistent, non-wasteful and not domi-
nated by any size-stable matching. µ(ϕ(XK)) is also feasible since C(ϕ(XK)) = ∅, therefore
it is a d-undominated size-stable matching. �
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