
Processing Reserves Simultaneously∗

David Delacrétaz†

Department of Economics and Nuffield College

University of Oxford

August 15, 2020

Abstract

Reserves allow combining competing objectives to allocate scarce resources based on

priority. For example, schools may reserve some seats for students from underprivileged

backgrounds or hospitals may reserve some ventilators for frontline health workers.

An important determinant of the outcome is the order in which reserve categories are

processed: categories processed later generally matter more than those processed earlier.

The reason is that an agent who qualifies for multiple categories counts towards the

quota of whichever category is processed first. I propose a new solution that processes

reserve categories simultaneously so that if an agent qualifies for n categories, she takes

1/n units from each of them. That approach treats categories symmetrically and offers

greater transparency: the relative importance of categories is entirely captured by the

size of their quotas.

Keywords: rationing problem, reserve system, simultaneous processing, equal sharing

JEL Classifications: C62, C78, D47, D61, D63.

∗I am grateful to Ravi Jagadeesan Scott Kominers, Alex Teytelboym, Özgür Yılmaz, and webminar

participants from the Lab for Economic Design at Harvard University for valuable comments and suggestions.
†Nuffield College, New Road, Oxford OX1 1NF; david.delacretaz@economics.ox.ac.uk.

1

1 Introduction

Reserve systems have been developed to solve a variety of real-world rationing problems,

including the allocation of medical resources (Pathak, Sönmez, Ünver, and Yenmez, 2020),

school seats (Dur, Kominers, Pathak, and Sönmez, 2018; Dur, Pathak, and Sönmez, 2020),

and immigration visas (Pathak, Rees-Jones, and Sönmez, 2020a). What these problems have

in common is that there are a certain number of identical and indivisible units (e.g., medical

resources, school seats, immigration visas) and a certain number of agents (e.g., patients,

students, applicants), each of whom desires one unit. If there are fewer units than agents,

some rationing rule must be used to determine which agents are allocated a unit. A simple

solution consists in ranking agents in order of priority and allocating units to the highest-

priority agents. Patients are for example often prioritized based on their medical situation

(Pathak, Sönmez, Ünver, and Yenmez, 2020) and schools often prioritize students based

on where they live or whether they have a sibling attending the school (Abdulkadiroglu and

Sönmez, 2003). In a reserve system, the priority may vary from one unit to another: units are

split into (reserve) categories and each category has its own priority order over agents. The

additional flexibility provided can help achieving a range of objectives, including promoting

diversity (Dur, Pathak, and Sönmez, 2020), implementing affirmative action (Sönmez and

Yenmez, 2019), or reconciling competing ethical value (Pathak, Sönmez, Ünver, and Yenmez,

2020).

In rationing problems with reserves, an allocation is typically obtained by processing

reserve categories sequentially. Categories are processed one at a time following a precedence

order and allocate their quotas (i.e., the number of units reserved) to the agents highest

on their respective priority order, among those who have not yet been allocated a unit.

With sequential processing, the order in which reserve categories are processed can impact

the allocation. To see this, suppose that an agent has the highest priority for multiple

categories. Whichever one of them is processed first will allocate one unit of its quota to

that agent; hence the other categories no longer have to allocate a unit to that agent by the

time they are processed and can instead allocate a unit to their next priority agent. As it

turns out, the impact of the precedence order is far from negligible and can be of similar

order of magnitude as the size of the quotas (Dur, Kominers, Pathak, and Sönmez, 2018;

Dur, Pathak, and Sönmez, 2020). In fact, the reserve system in place for Boston’s public

schools was abandoned in 2013, in large part due to concerns over the lack of transparency

associated with the processing order (Dur, Kominers, Pathak, and Sönmez, 2018). In the

H1-B visa allocation program in the United States, procedure changes made for logistical

reasons in 2005 and 2009 had unintended consequences on the outcome (Pathak, Rees-Jones,

2

and Sönmez, 2020a). In an experimental paper, Pathak, Rees-Jones, and Sönmez (2020b)

found that participants tend to correctly account for all decision-relevant parameters but

make mistakes as a result of not understanding that reversing the processing order affects

the outcome.

I propose a new solution to rationing problem with reserves that processes reserve cat-

egories simultaneously. Categories simultaneously allocate units to their highest-priority

agents, up to their quotas. If an agent is allocated a unit from, say, n categories, she will

only take 1/n units of capacity from each of them, allowing these categories to allocate more

capacity to agents further down their respective priority orders. The solution I develop has at

least two advantages over sequential processing. First, it is more transparent as the outcome

depends on the categories’ priorities and quotas but not on any precedence order. Second,

while sequential processing yields an extreme solution in which an agent qualified for mul-

tiple categories counts entirely towards the quota of one category, simultaneous processing

treats categories symmetrically and yields a solution in which an agent qualified for multiple

categories counts equally towards each of their quotas.

I introduce the Simultaneous Reserves (SR) algorithm (Algorithm 1). In each round,

categories allocate their quotas to their respective higher-priority agents. If an agent is

allocated more than one unit in aggregate (over all categories), then the amount she receives

from each category is reduced until she is allocated exactly one unit in aggregate. As a

result, some categories have additional capacity, which they can allocate in the next round

to agents further down their respective priority orders. Once no category has any additional

capacity to allocate, the algorithm has found an allocation. While the SR algorithm may run

for infinitely many rounds without finding an allocation, I show that it always converges to

one (Theorem 1). I call the allocation to which the SR algorithm converges the Simultaneous

Reserves (SR) allocation. The SR allocation specifies how much capacity each category

allocates to each agent. In contrast to most of the literature, these numbers do not have to

be binary so an agent can be allocated one unit in aggregate but receive parts of that unit

from different categories. Some agents may be allocated in aggregate an amount of capacity

strictly between zero and one. Thanks to the Birkhoff-von Neuman Theorem (Birkhoff, 1946;

Von Neumann, 1953), that number can be interpreted as the probability that the agent will

be allocated a unit. Moreover, the number of agents in that situation cannot exceed the

number of categories (which in practice tends to be small relative to the number of agents).

I analyze the properties of the SR allocation. I show that it satisfies three standard

axioms introduced by Pathak, Sönmez, Ünver, and Yenmez (2020)–compliance with eligibility

requirements, non-wastefulness, and the respect of priorities—as well as a fourth one that I

call respect of equal sharing (Theorem 2). An allocation respects equal sharing if every agent

3

who qualifies for multiple categories receives the same amount of capacity from all of them.

I show that the SR allocation is not the only allocation to satisfy all four axioms; however,

any other allocation that does generates the same aggregate allocation. That is, under any

two allocations that satisfy the four axioms, every agent is allocated the same amount of

capacity (Theorem 3). Therefore, differences among allocations that satisfy all four axioms

amount to a matter of accounting but do not have any tangible impact for agents. Among

the allocations that satisfy all four axioms, I characterize the SR allocation to be the one in

which agents require the least capacity from any given category (Theorem 4).

The fact that the SR algorithm may run for infinitely many rounds constitutes a clear im-

pediment to practical application. Following a similar approach to that of Kesten and Ünver

(2015), I use linear programming to speed up the SR algorithm. The resulting Simultaneous

Reserves algorithm with Linear Programming (SRLP algorithm) produces the SR allocation

in finitely many rounds and polynomial time (Theorem 5).

Related Literature

Pioneered by Kominers and Sönmez (2016), the literature on reserves has flourished in the

past few years and spanned a wide range of applications, including health care rationing

(Pathak, Sönmez, Ünver, and Yenmez, 2020), school choice (Dur, Kominers, Pathak, and

Sönmez, 2018; Dur, Pathak, and Sönmez, 2020), visa applications (Pathak, Rees-Jones, and

Sönmez, 2020a), and university admission in India (Sönmez, Yenmez, et al., 2019; Sönmez

and Yenmez, 2019; Aygün and Turhan, 2020; Aygun and Turhan, 2020), Brazil (Aygun

and Bó, 2020), and Germany (Westkamp, 2013). As a whole, that literature has offered a

large number of theoretical and practical insights into rationing problems with reserves. In

particular, it has shed light on central role that the precedence order plays and its possible

unintented consequences. This paper proposes a new approach for rationing problems with

reserves, one that does not use any precedence order. Yılmaz (2020) considers a rationing

problem with reserves and develops a solutions concept independent of any precedence order

that satisfies basic axioms and is as egalitarian as possible in terms of the probability that

each agent has of being allocated a unit. The SR allocation satisfies Yılmaz’s (2020) axioms

but pursues a different goal of treating categories symmetrically. In fact, most agents (all

but at most the number of categories) receive either zero or one unit.

The present paper also relates to the literature on random assignment and the probabilistic

serial assignment, initiated by Hylland and Zeckhauser (1979) and Bogomolnaia and Moulin

(2001), and generalized by Budish, Che, Kojima, and Milgrom (2013). The SR allocation

resembles a random assignment in the sense that each category allocates to each agent a

capacity between zero and one. However, agents do not “eat” categories in the hope to be

4

assigned one of them. Rather, categories allocate capacity to agents based on their priority

orders and, when an agent is allocated one unit in aggregate, that unit may be shared among

different categories. Kesten and Ünver (2015) consider a school choice model with priority

ties. As a result, a school may assign to a student an amount of capacity strictly between

zero and one and a student may be allocated parts of a seat by different school. An important

difference is that students have preferences over schools and must ultimately be assigned to

one of them while, in this paper, agents do not have preferences over categories and can be

assigned parts of a unit from different categories.

The remainder of the paper is organized as follows. Section 2 presents the setup and

the four axioms. Section 3 introduces the SR algorithm and analyzes the properties of the

SR allocation. Section 4 presents the SRLP algorithm and shows that it produces the SR

allocation in polynomial time. Section 5 concludes and all proofs are in the appendix.

2 Preliminaries

2.1 Setup

There are a set of agents a, a set of (reserve) categories c, and q ∈ Z>0 identical and

indivisible units. Each category c has a quota qc ∈ R≥0 with
∑

c∈C qc = q. For each

category c, there is a linear priority order πc over the set of agents and an eligibility

threshold ∅. Agent a is eligible for category c if aπc∅. For every agent a and every category c,

I denote by Âa,c = {a′ ∈ A : a′πca} the set of agents who have a higher priority than a for c

and by Ǎa,c = {a′ ∈ A : aπca
′} the set of agents who have a lower priority than a for c. A

rationing problem is a tuple R = (A,C, (πc)c∈C , (qc)c∈C) specifying a set of agents, a set

of categories, and for each category a priority order and a quota. I fix an arbitrary rationing

problem R throughout the paper. I say that the rationing problem R has soft reserves

if every agent is eligible for every category, i.e., if aπc∅ for every a ∈ A and every c ∈ C;

otherwise, I say that R has hard reserves.

A (random) allocation is a |A| × |C| matrix ξ = (ξa,c)a∈A,c∈C such that, for every

agent a and every category c, (i) ξa,c ∈ [0, 1], (ii)
∑

a∈A ξa,c ≤ qc., and (iii)
∑

c∈C ξa,c ≤ 1.

In words, each element ξa,c specifies the amount of capacity (between zero and one) that

category c allocates to agent a, each category allocates an amount of capacity no larger than

its quota, and each agent is allocated at most one unit overall. For every agent a, I denote

by ξa =
∑

c∈C ξa,c the total amount of capacity allocated to a at the allocation ξ and denote

by ρ(ξ) = (ξa)a∈A the aggregate allocation generated by the allocation ξ. As units are

5

indivisible, every agent must ultimately be allocated either zero or one unit; hence ξa can be

interpreted as the probability that a will be allocated a unit.1

2.2 Rationing Problems in Practice

The rationing problem described in this paper can model a variety of real world situations,

such as the allocation of a medical resource, school seats, and immigration visa. In the

medical rationing problem of Pathak, Sönmez, Ünver, and Yenmez (2020), each unit is a unit

of a medical resource, for example a ventilator or a dose of a vaccine, while each agent is a

patient who requires that medical resource. There is a general category, in which patients are

prioritized based on their medical situation (typically, based on expected health outcomes

and survival probabilities) Pathak, Sönmez, Ünver, and Yenmez (2020) also propose three

possible categories, each of which would prioritize a group of patients. An essential personnel

category would prioritize those patients whose activity is essential during a health emergency,

for example frontline health workers, a disadvantaged category would prioritize patients in

groups that are particularly affected by the crisis, and a Good Samaritan reciprocity category

would prioritize agents whose selfless acts have saved lives in the past, for example by donating

a kidney to a stranger, donating a large amount of blood, or participated in clinical trials. In

each of those categories, patients would first be ranked based on whether or not they are part

of the target group and then based on their medical situation. Last, Pathak, Sönmez, Ünver,

and Yenmez (2020) argue that prioritizing patients based on their medical situation can be

discriminatory to certain groups who might not have access at all to the medical resource as

a result. They propose to create a disabled category that does not take the general medical

situation into account but rather prioritizes patients who have a disability and breaks ties

with a lottery. It is natural to think of a medical rationing problem as one with soft resource

because it is typically better to allocate a unit to a low-priority patient than not at all. In

contrast to the rest of the literature, I do not restrict quotas to being integers (even though

the total number of units available is an integer).

School choice constitutes another application: each unit is a seat at a given school and

each agent is a student who would like to attend that school. Until 2013, Boston had a reserve

system with two categories, each of which had a quota equal to half of the total number of

seats (Dur, Kominers, Pathak, and Sönmez, 2018). The general category prioritized students

who had a sibling attending the schools and then broke ties with a lottery while the walk

1The Birkhoff-von Neumann Theorem (Birkhoff, 1946; Von Neumann, 1953) guarantees the existence of
a lottery such that every agent a has a probability ξa of being allocated a unit. Moreover, I show that the
number of agents who are allocated a total capacity strictly between zero and one is at most equal to the
number of categories.

6

zone category prioritized students who lived within walking distance of the school and broke

ties based on the general category priority. In Chicago (Dur, Pathak, and Sönmez, 2020),

the city’s neighborhoods are split into four tiers based on socioeconomic factors. There is a

general category that prioritizes students based on merit and and four tier-specific categories

(one per tier), which prioritize students who live in one of the tier’s neighborhoods. The

general category’s quota is equal to 30% of the school’s seats and each of the tier-specific

categories has a quota equal to 17.5% of the school’s seats. School choice constitutes another

example of soft reserves: all seats are allocated as long as there are at least as many students

as there are seats.

Pathak, Rees-Jones, and Sönmez (2020a) document a reserve system for the allocation

of H-1B visas in the United States. In that application, each unit is a H-1B visa and each

agent is a visa applicant and there are two categories: a general category with a quota of

65, 000 visas and an advanced-degree category with a quota of 20, 000 visas. There are two

separate lotteries, each of which determines the priority order of one of the categories. Only

applicants with an advanced degree are eligible for the advanced-degree category; therefore,

the allocation of H-1B visas is an example of a rationing problem with hard reserves: even if

the advanced degree category allocates fewer than 20, 000 visas, the remaining ones cannot

be allocated to applicants who do not have an advanced degree.

Last, a practically relevant aspect of the model is worth a mention. While the total

number of units is an integer, there is no such restriction on the categories’ quotas. To the

best of my knowledge, this paper is the first to provide that feature in the context of reserves.

The additional flexibility may prove useful in practice, particularly when the number of units

is small; for instance, if the policy is to allocate 30% of ventilators to essential personnel and

70% to the general population, a hospital with 5 ventilators can set the quotas to 1.5 and 3.5.

2.3 Desirable properties for an allocation

Pathak, Sönmez, Ünver, and Yenmez (2020) introduce three axioms that an allocation should

satisfy: compliance with eligibility requirements, non-wastefulness, and respect of priorities.

An important difference between my setting and theirs is that Pathak, Sönmez, Ünver, and

Yenmez (2020) consider allocations (or matching in their terminology) in which each element

is either zero or one; that is, each agent allocated either zero units or one unit from exactly

one category. I generalize the three properties of Pathak, Sönmez, Ünver, and Yenmez (2020)

to my setting and introduce a fourth one—respect of equal sharing—that lies at the heart of

the solution I propose.

7

Axiom 1. An allocation ξ is complies with eligibility requirements if, for every agent a

and every category c such that a is not eligible for c, ξa,c = 0.

The first axiom requires that agents be only allocated capacity by categories for which

they are eligible. In a rationing problem with soft reserves (e.g., medical resource rationing

or school choice), every allocation trivially complies with eligibility requirements; however

Axiom 1 matters in the presence of hard reserves. For instance, in the H1-B visa program,

Axiom 1 precludes applicants who do not have an advanced degree from being allocated one

of the 20, 000 visas reserved for advanced-degree applicants.

Axiom 2. An allocation ξ is non-wasteful if, for every category c such that
∑

a∈A ξa,c < qc

and every agent a such that ξa < 1, a is not eligible for c.

The second axiom states that whenever a category has not allocated its full quota, then

none of the remaining capacity can benefit an agent who is eligible for that category, as

that capacity would then be wasted. In a rationing problem with soft reserves, Axiom 2

requires that either all agents be allocated a unit or all units be allocated, that is
∑

a∈A ξa =

min{{|A|, q}. With hard reserves, some categories may allocate an amount of capacity smaller

than their quotas as long as every agent who could has not been allocated one unit is ineligible

for those categories. In the H1-B visa program, an allocation in which all advanced-degree

applicants have received a visa is non-wasteful, even if fewer than the 20, 000 visas reserved

for them have been allocated and some applicants without an advanced degree

Axiom 3. An allocation ξ respects priorities if for every agent a such that ξa < 1, every

category c and every lower-priority agent a′ ∈ Ǎa,c, ξa′,c = 0.

The third axiom ensures that each category allocates its capacity based on priority, that

is an agent can only be allocated capacity from a category if all higher-priority agents have

been allocated a unit. As Pathak, Sönmez, Ünver, and Yenmez (2020, p.13) note, Axioms 1-3

are widely accepted as properties that a good allocation should possess:

“As far as we know, in every real-life application of a reserve system each of these

three axioms are either explicitly or implicitly required. Hence, we see these three

axioms as a minimal requirement for reserve systems.”

While Axioms 1-3 do narrow down the set of allocations that should be considered, they

leave many possible candidates. In particular, these axioms are silent on a key question of

reserve allocation: if an agent qualifies to be allocated a unit from multiple categories, from

which one(s) will she receive it? The common solution both in practice and in the literature

is to use a sequential reserve algorithm in which categories are processed one at a time and

8

allocate, up to their quota, one unit of capacity to the highest-priority eligible agents who

have not yet been allocated a unit (see Pathak, Sönmez, Ünver, and Yenmez (2020, p.17) for

a full description of that procedure). The implication is that if an agent qualifies for multiple

categories, she will receive a unit from whichever is processed first; hence the categories

processed early will tend to allocate units to agents who also qualify for other categories.

At the heart of my proposed solution is the idea that, while units are ultimately indivisible,

how much capacity categories allocate to agents is merely an accounting exercise; therefore,

an agent allocated one unit overall can receive parts of that unit from multiple categories.

The fourth axiom, which is new to this paper, stipulates that the unit that an agent receives

should be shared equally among the categories for which she qualifies.

Axiom 4. An allocation ξ respects equal sharing if, for every agent a and every category c

such that a is eligible for c and ξa,c < maxc′∈C{ξa,c′}, ξa,c +
∑

a′∈Âa,c
ξa′,c = qc.

Axiom 4 ensures that each agent receives the same amount of capacity from every category

that has the capacity to do so.

3 The Simultaneous Reserves (SR) allocation

In this section, I propose an algorithm that processes reserve categories simultaneously (as

opposed to sequentially) and produces an allocation that satisfies Axioms 1-4. I call that

allocation the Simultaneous Reserves (SR) allocation and show that any other allocation

satisfying these axioms generates the same aggregate allocation.

3.1 The Simultaneous Reserves (SR) algorithm

The Simultaneous Reserves (SR) algorithm is formally described in Algorithm 1. In order

to describe the algorithm and analyze its properties, it is useful to define the concept of a

pre-allocation, which is identical to an allocation but allows agents to be allocated more

than one unit overall. Formally, a pre-allocation is a |A| × |C| matrix x = (xa,c)a∈A,c∈C such

that, for every agent a and every category c, (i) xa,c ∈ [0, 1], (ii)
∑

a∈A xa,c ≤ qc. I denote

by xa =
∑

c∈C xa,c the total amount of capacity allocated to agent a at the pre-allocation x.

Axioms 1-4 are defined analogously over pre-allocations.

At the start of the SR algorithm, each agent has a demand of 1. This can be interpreted

as the largest amount that an agent could require from any category; as every agent requires

one unit overall, the demand starts at 1 but may fall throughout the algorithm as agents are

allocated capacity.

9

Algorithm 1: Simultaneous Reserves (SR)

Initialization Set every agent’s demand to one: d0a = 1 for every agent a.

Round i ≥ 1:

Capacity Allocation For every agent a and every category c, if a is eligible for c then
xia,c = min{di−1a ,max{qc −

∑
a′∈Âa,c

di−1a′ , 0}} and otherwise xia,c = 0.

Demand Adjustment For every agent a such that xia < 1, set dia = 1. For every agent a
such that xia = 1, set dia = maxc∈C{xia,c}. For every agent a such that xia > 1, set dia such
that

∑
c∈C min{dia, xia,c} = 1.

The first round starts with the Capacity Allocation stage: each category allocates one

unit of capacity to one agent at a time in decreasing order of priority until it has less than one

unit of capacity left or has allocated one unit of capacity to every eligible agent, whichever

comes first. The next agent receives the remaining capacity (which could be 0 or any number

smaller than 1) and the remaining agents are not allocated any capacity.

The Capacity Allocation stage generates a pre-allocation x1, where for any agent-category

pair (a, c), x1a,c is the amount of capacity that c has allocated to a. An agent may be allocated

more than one unit overall so x1 is a pre-allocation but not necessarily an allocation. The

Demand Adjustment stage reduces the amount of capacity that agents demand in order to

turn x1 into an allocation. The Demand Adjustment stage does not affect agents who have

not yet been allocated a unit in aggregate (i.e., a such that xa < 1), those agents continue

to demand one unit. The demand of an agent who has been allocated exactly one unit in

aggregate (i.e., a such that xa = 1) falls to the maximum capacity she is allocated from

any category (i.e., maxc∈C{xia,c}). The rationale is that she does not require more from any

category in order to be allocated one unit in aggregate so any additional capacity for which

she qualifies can be allocated to the next agent on the priority order. The demand of an

agent who has been allocated more than one unit in aggregate (i.e., a such that xa > 1) falls

even further so that she abandons any capacity she does not require and is only allocated

one unit in aggregate (as
∑

c∈C min{dia, xia,c} = 1).

Every subsequent Round i starts with a demand vector di−1 and, in the Capacity Allo-

cation stage, calculates a pre-allocation xi. The highest-priority agents are allocated their

demand until there is not enough capacity for the next agent. That agent receives what-

ever capacity remains and the lower-priority agents are not allocated any capacity. For any

agent a, the expression qc−
∑

a′∈Âa,c
di−1a′ represents the amount of capacity left for a once all

10

higher-priority agents have been allocated their demand. If it is zero or negative, then there

is no capacity left for agent a so she is not allocated any capacity. If it is equal to or larger

than di−1a , then agent a is allocated her demand. If it is anything in between, then agent a is

allocated that remaining capacity. In the Demand adjustment stage, di is calculated based

on xi and the algorithm continues in Round i+ 1, in which xi+1 and di+1 are calculated.

I next illustrate how the SR algorithm can generate an allocation.

Example 1. There are five agents and four categories, each with a quota of 1. Every agent

is eligible for every category and the priorities are

πc1 : a1, a2, a3, . . . πc2 : a1, a2, a4, . . . πc3 : a1, a3, . . . πc4 : a4, a5,

The pre-allocation calculated in each of the first four rounds of the SR algorithm is

displayed in Table 1. In Round 1, each category allocates one unit of capacity to its highest-

priority agent. As agent a1 is allocated a unit from three different category, her demand drops

to 1/3. In Round 2, categories c1, c2, and c3 only allocate 1/3 to a1, which leaves 2/3 to

allocate to their second highest-priority agents. As a result, a2 is allocated 4/3 in aggregate

(2/3 from each of c1 and c2) and so her demand drops to 1/2. In Round 3, c1 and c2 allocate

1/3 to a1 and 1/2 to a2; hence they have 1/6 left to allocate to their third highest-priority

agents, respectively a3 and a4. Agent a4 is now allocated 7/6 in aggregate (1/6 from c2 and 1

from c4) so her demand drops to 5/6. In Round 4, c4 only needs to allocate 5/6 to a4 and can

therefore allocate 1/6 to its second highest-priority agent a5. Every agent is now allocated at

most one unit so the Round 4 pre-allocation x4 is in fact an allocation. It is easy to see that,

in any subsequent round the SR algorithm continues to produce the same (pre-)allocation

and demand vector. Hence, in Example 1, the SR algorithm produces the allocation

x4 =

c1 c2 c3 c4

a1 1/3 1/3 1/3 0

a2 1/2 1/2 0 0

a3 1/6 0 2/3 0

a4 0 1/6 0 5/6

a5 0 0 0 1/6

,

which generates the aggregate allocation

ρ(x4) =
(a1 a3 a3 a4 a5

1 1 5/6 1 1/6
)
.

11

Round 1 Round 2
c1 (1) c2 (1) c3 (1) c4 (1) c1 (1) c2 (1) c3 (1) c4 (1)

a1 1 a1 1 a1 1 a4 1 a1 1/3 a1 1/3 a1 1/3 a4 1

a2 0 a2 0 a3 0 a5 0 a2 2/3 a2 2/3 a3 2/3 a5 0

a3 0 a4 0 a3 0 a4 0

Round 3 Round 4
c1 (1) c2 (1) c3 (1) c4 (1) c1 (1) c2 (1) c3 (1) c4 (1)

a1 1/3 a1 1/3 a1 1/3 a4 1 a1 1/3 a1 1/3 a1 1/3 a4 5/6

a2 1/2 a2 1/2 a3 2/3 a5 0 a2 1/2 a2 1/2 a3 2/3 a5 1/6

a3 1/6 a4 1/6 a3 1/6 a4 1/6

Table 1: SR Algorithm applied to Example 1

It is easy to verify that the allocation x4 satisfies Axioms 1-4. At first sight, it might look

as if x4 does not respect equal sharing because a4 is allocated 1/6 from c2 and 5/6 from c4.

However, this does not violate Axiom 4 as c2 can only allocate 1/6 to a4 after having allocated

1/3 to a1 and 1/2 to a2; formally, x4a4,c2 +
∑

a∈Âa4,c2
x4a,c2 = 1/6+1/3+1/2 = 1 = qc2 . The fact

that the SR algorithm produces an allocation that satisfies Axiom 1-4 is not a coincidence.

In the next two subsections, I formally define the outcome of the SR algorithm and show

that it is an allocation satisfying Axioms 1-4.

3.2 Outcome of the SR algorithm

In Example 1, the SR algorithm finds an allocation after four rounds. In general, the SR

algorithm may never reach an allocation; however its outcome is nevertheless well-defined.2

Theorem 1. The SR algorithm converges to an allocation ξSR = limi→∞ x
i.

I call ξSR the Simultaneous Reserves (SR) allocation and discuss its properties in

Subsection 3.3. The remainder of this section is devoted to proving and providing intuition

for Theorem 1. The SR allocation may reach an allocation (as it does in Example 1), in

which case that allocation will be that outcome.

In Example 1, the SR algorithm finds an allocation after four rounds and continues to

return the same allocation and demand vector in every subsequent round. As the next result

shows, this always occurs once the SR algorithm has found an allocation.

Proposition 1. Suppose that, in some Round i of the SR algorithm, xi is an allocation.

Then, for every j > i, xj = xi and dj = di.

2In Section 4, I propose an outcome-equivalent algorithm that works in polynomial time and finds an
allocation after fewer than 4|A||C| rounds.

12

Round 1 Round 2
c1 (1) c2 (1) c3 (2) c1 (1) c2 (1) c3 (2)

a1 1 a3 1 a1 1 a1 1/2 a3 1/2 a1 1/2

a2 0 a2 0 a3 1 a2 1/2 a2 1/2 a3 1/2

a3 0 a1 0 a2 0 a3 0 a1 0 a2 1

a4 0 a4 0 a4 0 a4 0 a4 0 a4 0

Round 3 Round 4
c1 (1) c2 (1) c3 (2) c1 (1) c2 (1) c3 (2)

a1 1/2 a3 1/2 a1 1/2 a1 5/12 a3 5/12 a1 5/12

a2 1/3 a2 1/3 a3 1/2 a2 1/3 a2 1/3 a3 5/12

a3 1/6 a1 1/6 a2 1/3 a3 3/12 a1 3/12 a2 1/3

a4 0 a4 0 a4 2/3 a4 0 a4 0 a4 5/6

Round 4 Round 5 Round 6 Round 7 . . . Round i ≥ 3
xia3,c1 3/12 7/24 15/48 31/96 . . . (2i−2 − 1)/(3 · 2i−2)
xia1,c2 3/12 7/24 15/48 31/96 . . . (2i−2 − 1)/(3 · 2i−2)
xia4,c3 5/6 11/12 23/24 47/48 . . . (3 · 2i−3 − 1)/(3 · 2i−3)
dia1 9/24 17/48 33/96 65/192 . . . (2i−1 + 1)/(3 · 2i−1)
dia3 9/24 17/48 33/96 65/192 . . . (2i−1 + 1)/(3 · 2i−1)

Table 2: SR Algorithm applied to Example 2

The intuition for Proposition 1 is simple. If xi is an allocation, then no agent is allocated

more than one unit so the demand of every agent is at least what she is allocated from any

category and so, in the next Round, every category continues to allocate the same capacity to

every agent, i.e., xi+1 = xi. In each round, the demand vector depends on the current round’s

pre-allocation and the pre-allocation depends on the previous round’s demand vector; hence

the SR algorithm continues to return the same (pre-)allocation and demand vector in every

subsequent round.

Proposition 1 implies that the SR algorithm can stop once it finds an allocation. Unfor-

tunately, as the next example shows, the SR algorithm may never reach an allocation.

Example 2. There are four agents and three categories. The priorities and quotas are

πc1 : a1, a2, a3, a4, ∅ πc2 : a3, a2, a1, a4, ∅ πc3 : a1, a3, a2, a4, ∅ qc1 = 1 qc2 = 1 qc3 = 2.

The working of the SR algorithm is displayed in Table 2. In Round 1, c1 and c2 each

allocate one unit to their highest-priority agent, respectively a1 and a3. Category c3 has two

units and allocates them to its two highest priority agents, a1 and a3. Each of a1 and a3 is

allocated a unit from two different categories; hence the demand of both agents drops to 1/2.

13

In Round 2, each of c1 and c2 has an extra half unit to allocation, which goes to their second

highest-priority agent, a2 while c2 has an extra unit to allocate to its third-highest priority

student, who is also a2. As a result, a2’s demand drops to 1/3. In Round 3, c1 allocates 1/6

to a3, c2 allocates 1/6 to a1, and c3 allocates 2/3 to a4.

At this point, the SR algorithm begins to cycle. Agent a1 is allocated 7/6 in aggregate

(i.e., x3a1 = 7/6) so her demand drops in Round 3. However, she can only be allocated 1/6

from c2, meaning she needs to be allocated 5/12 from each for c1 and c3. It follows that a1’s

demand drops to 5/12. Analogously, a3 is allocated 7/6 in aggregate and her demand drops

to 5/12 as well. In Round 4, as the result of the drop in a1 and a3’s demand (by 1/12 each),

c1 allocates an extra 1/12 to a3, c2 allocates an extra 1/12 to a1, and c3 allocates an extra

1/6 to a4. The extra 1/6 of capacity that a1 has released has benefit for half to a4 (at c3)

and for half to a3 (at c1) while the extra 1/6 of capacity that a3 has released has benefit for

half to a4 (at c3) and for half to a1 (at c2). As a result, each of a1 and a3 are allocated 13/12

in aggregate in Round 4 so their demand drops to 9/24. In Round 5, as in Round 4, half of

the capacity released by a1 and a3 goes to a4 (c3 allocates an extra 1/12 to a3) and the other

half comes back to a1 and a3 (c1 allocates an extra 1/24 to a3 and c2 allocates an extra 1/24

to a1). The SR algorithm continues to cycle forever, with the amount of capacity reallocated

halving in each round. However, even though the SR algorithm never reaches an allocation,

it converges to one:

ξSR =

c1 c2 c3

a1 1/3 1/3 1/3

a2 1/3 1/3 1/3

a3 1/3 1/3 1/3

a4 0 0 1

.
I now show that the SR algorithm always converges to an allocation even when it

never reaches one. For every Round i of the SR algorithm, I construct the allocation

ξi = (ξia,c)a∈A,c∈C such that, for every agent a and every category c, ξia,c = min{dia, xia,c}.
By construction, ξia ≤ 1 for every agent a so ξi is indeed an allocation.3 I also define the ma-

trix zi = xi− ξi to be the excess supply in Round i of the SR algorithm. For every agent a,

zia =
∑

c∈C z
i
a,c can be interpreted as the capacity that a is allocated in addition to the one

unit she requires. I denote the total excess supply by |zi| =
∑

a∈A z
i
a =

∑
a∈A

∑
c∈C z

i
a,c. In

Example 2, the total excess supply is 1/3 in Round 3 (each of a1 and a3 is allocated 7/6)

and is halved in every subsequent round; hence it converges to zero.

Proposition 2. For every Round i ≥ 1 of the SR algorithm, |zi+1| ≤ |zi| ≤ |A|(|C| − 1)/i.

3I prove formally that ξi is an allocation in the Appendix (Lemma 3).

14

There is a relatively simply intuition for why the total excess supply decreases throughout

the SR algorithm. If in some round an agent is allocated more than one unit in aggregate,

that extra capacity is reallocated in the next round. It may be reallocated to an agent who

was already allocated one unit in aggregate, in which case it continues to count towards the

total excess supply, or to an agent who was not yet been allocated one unit in aggregate.

In the latter case, as agents always keep the capacity they are allocated up to one unit,

the extra capacity no longer counts towards the excess supply in any subsequent round. In

Example 2 the excess supply is halved in every Round i ≥ 1 because half of the excess

supply is reallocated to a1 and a3, who are already allocated one unit, and the other half

is allocated to a4, who does not. The intuition for the upper bound is that, as excess

supply is reallocated, categories allocate capacity to agents further down their priority order.

Eventually, they must reach the bottom and so there is a bound on how much excess supply

can be reallocated throughout the algorithm; hence the more rounds have occurred, the

smaller the total excess supply must be in each round.

Proposition 2 implies that the total excess supply converges to zero. As every element

of zi is weakly positive, each of them must then also converge to zero. Therefore, xi and ξi

must converge to each other and we have the following corollary.

Corollary 1. limi→∞ z
i = 0 and ξSR = limi→∞ ξ

i = limi→∞ x
i.

Corollary 1 guarantees that ξSR is well defined. As ξi is an allocation in every Round i

of the SR algorithm, it is natural to think its limit ξSR is an allocation as well. I formally

show this in the appendix, which completes the proof of Theorem 1.

3.3 Properties of the SR allocation

Having defined the SR allocation, I now turn to its properties in regard to the axioms defined

in Section 2.3.

Theorem 2. The SR allocation satisfies Axioms 1-4.

The key driver behind Theorem 2 is the Demand Adjustment stage in the SR algorithm.

An agent’s demand sets an upper bound on how much categories can allocate to that agent

in subsequent rounds; thus, it ensures that all categories that would allocate at least that

upper bound allocate the same amount to that agent. As a result, xi respects equal sharing

in each Round i. The Capacity Allocation stage ensures that xi also satisfies Axioms 1-3.

Theorem 2 follows from the fact that these properties continue to hold in the limit.

Theorem 2 makes the SR allocation an appealing solution for a rationing problem with

reserves. It satisfies the natural requirements that are Axioms 1-3 and ensures that an agent

15

who qualifies for multiple categories affects equally the quota of each of those categories.

This is in contrast to current solutions that assign each agent to one category. A natural

question at this point is whether the SR allocation is the only one to possess. The next

example shows that this is not the case; however I will show that any alternative allocation

that satisfies Axioms 1-4 generates the same aggregate allocation.

Example 3. There are two agents and two categories, each with a quota of 1. The priorities

are πc1 : a1, a2, ∅ and πc2 : a2, a1, ∅.

In Example 3, the SR algorithm reaches the allocation

ξSR =

(c1 c2

a1 1 0

a2 0 1

)

in Round 1: each category allocates one unit to its highest-priority agent and no demand

adjustment is required. However, for any λ ∈ [0.5, 1], the allocation

ξλ =

(c1 c2

a1 λ 1− λ
a2 1− λ λ

)

satisfies Axioms 1-4. To see this, notice that ξλ trivially satisfies Axioms 1-3 since every agent

is eligible for every category and ξλa1 = ξλa2 = 1. If λ = 0.5, then ξλ also trivially respects

equal sharing since all four elements of ξλ are equal to 0.5. If λ > 0.5, then ξλa1,c2 < ξλa1,c1
and ξλa2,c1 < ξλa2,c2 ; however, Axiom 4 is not violated since ξλa1,c2 + ξλa2,c2 = 1 = qc2 and

ξλa2,c1 + ξλa1,c1 = 1 = qc1 .
4

The SR allocation is not the unique allocation that satisfies Axioms 1-4; in fact, there may

be infinitely many such allocations. However, one aspect of Example 3 is worth noting: for

every λ ∈ [0.5, 1], ξλ allocates one unit of capacity to each of a1 and a2. That is, ρ(ξλ) = ρ(ξSR

for every λ ∈ [0.5, 1]. As it turns out, this is not specific to Example 3.

In order to formalize that idea, I introduce two pieces of terminology. I call the aggregate

allocation ρ(ξSR) generated by the SR allocation the SR aggregate allocation and for any

allocation ξ, I call ξ SR equivalent if it generates the SR aggregate allocation, that is if

ρ(ξ) = ρ(ξSR).

Theorem 3. Every allocation that satisfies Axioms 1-4 is SR equivalent.

4If λ < 0.5, ξλ no longer respects equal sharing since ξλa1,c1 < ξλa1,c2 and ξλa1,c1 < 1 = qc1 .

16

Corollary 2. An aggregate allocation is generated by an allocation that satisfies Axioms 1-4

if and only if it is the SR aggregate allocation.

Theorem 3 and Corollary 2 imply that, even though many allocations may satisfy Ax-

ioms 1-4, any difference among them is immaterial as every agent is allocated the same

capacity in aggregate. The SR aggregate allocation stands apart as the only one to be gen-

erated by an allocation satisfying Axioms 1-4. Moreover, Theorem 3 and Corollary 2 are

sharp in the sense that each of the four axioms is needed in order to obtain the SR aggregate

allocation.

Proposition 3. For each Axiom 1-4, there exists a rationing problem in which an allocation

that is not SR equivalent satisfies the other three axioms.

Finally, I return to the SR allocation and show that is characterized by Axiom 1-4 and

an additional simple property. For any pre-allocation x and every agent a, I define da(x) to

be the demand of agent a associated with x, as defined in the SR algorithm. That is, if

xa < 1, then da(x) = 1; if xa = 1, then da(x) = maxc∈C{xa,c}; and if xa > 1, then da(x) is

such that
∑

c∈C min{da(x), xa,c} = 1. I denote by d(x) = (da(x))a∈A the vector containing all

of the agents’ demand associated with x. Note that for an allocation ξ, a’s demand simplifies

to

da(ξ) =

{
1 if ξa < 1

maxc∈C{ξa,c} if ξa = 1.

Theorem 4. For every allocation ξ∗ 6= ξSR that satisfies Axioms 1-4, d(ξ∗) < d(ξSR).

Theorem 4 allows fully characterizing the SR allocation: it is the allocation satisfying

Axioms 1-4 with the largest demand associated with it. The intuition behind that result is

relatively simple. The SR algorithm initially sets every agent’s demand to one, the largest

possible level. In each round, it calculates a pre-allocation that satisfies Axioms 1-4 and

reduces the demands in order to eliminate the excess supply. Thus, the SR algorithm finds in

each round an upper bound for the demand vector in any allocation that satisfies Axioms 1-4.

The algorithm continues until the demand vector has been reduced just enough to find an

allocation satisfying Axioms 1-4; hence it identifies the largest demand vector for which such

an allocation exists.

4 Simultaneous Reserves with Linear Programming

A practical shortcoming of the SR algorithm is that it may run for infinitely many rounds.

In this section, I propose an alternative algorithm that is outcome equivalent but runs in

17

Algorithm 2: Simultaneous Reserves with Linear Programming (SRLP)

Initialization Set every agent’s demand to one: d0a = 1 for every agent a.

Round i ≥ 1:

Linear Programming If either i = 1 or i > 1 and there exists an agent-category pair (a, c)
such that either xi−1a,c > xi−2a,c = 0 or xi−1a,c ≥ di−1a and xi−2a,c < di−2a , set δia = di−1a for every
agent a. Otherwise, set δia = δLPa (xi−1, di−1) (calculated by Algorithm 3) for every agent a.

Capacity Allocation For every agent a and every category c, if a is eligible for c then
xia,c = min{δi,max{qc −

∑
a′∈Âa,c

δia′ , 0}} and otherwise xia,c = 0.

Termination If xia ≤ 1 for every agent a, end and output xi.

Demand Adjustment For every agent a such that xia < 1, set dia = 1. For every agent a
such that xia = 1, set dia = maxc∈C{xia,c}. For every agent a such that xia > 1, set dia such
that

∑
c∈C min{dia, xia,c} = 1.

polynomial time. The Simultaneous Reserves algorithm with Linear Programming (SRLP

algorithm) is formally described in Algorithm 2. Its structure is similar to that of the SR

algorithm but in some rounds it solves a linear programming problem (described in Algo-

rithm 3) to update the demand of some agents. As a result, it is outcome equivalent but

faster than the SR algorithm.

Theorem 5. The SRLP algorithm produces ξSR after fewer than 4|A||C| rounds.

In the remainder of this section, I describe the SRLP algorithm and illustrate its working

using Example 2. Along the way, I provide some intuition for Theorem 5, whose formal proof

can be found in Appendix A.4. First, a note about the running time of the SRLP algorithm is

in order. By Theorem 5, the number of rounds required is polynomial in |A||C|. For a round

in which linear programming is not used |A|(|C|+ 2) operations are required (each category

allocates some amount of capacity to each agent and then the total capacity allocated and

demand of each agent is calculated). As linear programming can be solved in polynomial

time (Khachiyan, 1979), it follows that the SR algorithm works in polynomial-time.

At the high level, the idea behind the SRLP algorithm is to identify when the SR algorithm

is at risk of slowing down, and speed up the process by using linear programming. For this

purpose, in every Round i of the SRLP algorithm, I split the agent-category pairs into three

groups. I say that agent a is qualified for category c if xia,c ≥ dia. The term captures the idea

that a has a high enough priority for c in order to get the amount of capacity she requires

18

Algorithm 3: Linear Programming (LP)

.

Input Take the input x and d from Algorithm 2.

Linear Program Construction For every agent a, construct the set of categories for
which a is qualified and marginal: CQ(a) = {c ∈ C : xa,c ≥ da} and CM(a) = {c ∈ C : xa,c ∈
(0, da)}. Let Ã = {a ∈ A : min{|CQ(a)|, |CM(a)|} ≥ 1} be the set of agents who are qualified
and marginal for at least one category.

Let C̃ = {c ∈ C : c ∈ CM(a) for some a ∈ Ã} be the set of categories that have a marginal

agent who is qualified for another category. For every such category c ∈ C̃, let a(c) be
that category’s marginal agent, construct the set AQ(c) = {a ∈ A, xa,c ≥ da} of agents that

are qualified for c and the subset ÃQ(c) = {a ∈ Ã, xa,c ≥ da} of them that are marginal
for another category, and adapt the quota to dismiss the agents that are not marginal for
another category: q̃c = qc −

∑
a∈AQ(c)\ÃQ(c) da.

Linear Program Solving Solve the following linear programming problem:

max
(ξa(c),c)c∈C̃

∑
c∈C̃

ξa(c),c

subject to ξa(c),c ≤
1−

∑
c′∈CM (a(c))\{c} ξa(c),c′

|CQ(a(c))|+ 1

and ξa(c),c ≤ q̃c −
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|
for every c ∈ C̃.

(LP 1)

Output Let the vector (ξ∗a(c),c)c∈C̃ be the solution to the linear program (LP 1). For every
agent a, set

δLPa (x, d) =

{
1−

∑
c′∈CM (a(c))\{c} ξ

∗
a(c),c′

|CQ(a(c))|+1
if a ∈ Ã

da if a ∈ A \ Ã.

19

from it. In contrast, if xia,c = 0, I say that agent a is unqualified for category c in Round i:

a’s priority for c is not high enough to obtain any capacity. In the intermediate case in which

0 < xia,c < dia, I say that a is marginal for c. I refer to agent a’s quality as either qualified,

marginal, or unqualified as a’s status for c. Using the convention that x0 = 0, initially every

agent is unqualified for every category. Throughout the SRLP algorithm, an agent’s status for

a category may change to marginal or qualified; however, any such change is by construction

irreversible; therefore, there can be at most 2|A||C| status changes throughout the entire

algorithm. Moreover, once 2|A||C| status changes have occurred, every agent is qualified for

every category so the only possible allocation is one in which each agent is allocated 1/|C|
from each category and the SRLP algorithm ends.5 The SRLP algorithm works identically

to the SR algorithm until either it finds an allocation—in which case the SRLP algorithm

ends and returns that allocation—or a round occur in which no status changes. In the latter

case, the SRLP algorithm uses the linear program described in Algorithm 3 in the following

round, which ensures that either an allocation is found or at least one status changes. As

a result, at least one status changes every second round so the SRLP algorithm finds an

allocation within 4|A||C| rounds.6

Whenever no change of status occur has occurred in the previous round (i.e., there is no

agent-category pair (a, c) such that either xi−1a,c > xi−2a,c or xi−1a,c > di−1a and xi−2a,c < di−2a), the

SRLP algorithm uses Algorithm 3 to calculate a new demand vector. Algorithm 3 takes a

pre-allocation x and the associated demand vector d (given by the SRLP algorithm) as inputs

and returns a demand vector δLP . I next describe how Algorithm 3 works and illustrate it

with Example 2.

What the SR algorithm does is allocate the excess supply to marginal agents in each round

until either a marginal agent is allocated her demand—in which case a change of status

occurs)—or there is no more excess supply—in which case an allocation has been found.

As Example 2 shows, this may take infinitely many rounds; however, linear programming

allows doing it in just one round. The idea is to maximize the amount of capacity allocated

to marginal agents under the constraints that agents cannot be allocated more than their

demand from any category and more than one unit overall and that categories may not

allocate more than their quotas.

Consider a Round i in which the SRLP uses linear programming. Then, x = xi−1 and

d = di−1 are the input to Algorithm 3, which will calculate a demand vector δLP (x, d). The

idea behind Algorithm 3 is to first calculate an allocation ξ that satisfies Axioms 1-4 and

5See the proof of Lemma 25 in Appendix A.4 for a formal argument.
6As at least two status changes occur in the first round but one more round may be required once all agents

are qualified for all categories, an upper bound on the number of rounds after which the SRLP algorithm
ends is 4|A||C| − 2, see the proof of Lemma 25 in Appendix A.4 for details.

20

satisfies that ξa,c = 0 for every agent-category pair (a, c) such that xa,c = 0; that is, an

agent who was unqualified for a category in Round i− 1 does not receive any capacity from

that category under ξ. The output of Algorithm 3 will turn out to be the demand vector

associated with that allocation:

δLPa =

{
1 if ξa < 1

maxc∈C{ξa,c} if ξa = 1.

Every agent a who was unqualified for every category in Round i− 1 is not allocated any

capacity in aggregate: ξa = 0 so his demand will remain one: δLPa = da = 1. Consider next

an agent a who was qualified for some categories in Round i − 1 but not marginal for any.

Then, equal sharing dictates that ξa,c = xa,c = 1/|CQ(a)| for every c ∈ CQ(a) (where CQ(a)

is the set of categories for which a is eligible, as calculated in Algorithm 3). It follows that

such an agent’s demand does not change either: δLPa = da = 1/|CQ(a)|. Finally, consider an

agent a who was marginal for some categories in Round i− 1 but not qualified for any. That

agent’s demand in Round i− 1 was then one, hence da = 1. For every category for which a

was marginal, all lower-priority agents were unqualified (see Claim 5 in Appendix A.4 for a

formal statement); therefore, regardless of a’s demand, those agents are not allocated any

capacity from c. Then, what a is allocated does not affect any other agent and one can simply

set ξa,c = 0 for every c ∈ C and δLPa = da = 1.

The agents for which linear programming is required are those in set Ã (defined in Algo-

rithm 3) who are qualified for at least one category and marginal for at least one category.

Those agents receive one unit in aggregate so
∑

c∈CQ(a) ξa,c +
∑

c∈CM (a) ξa,c = 1 for every

a ∈ Ã. The challenge is to determine how the unit allocated to a is shared among categories.

Equal sharing dictates that a receive her demand from each category for which she is qualified

so we have that

|CQ(a)|δLPa +
∑

c∈CM (a)

ξa,c = 1 for every a ∈ Ã. (1)

Moreover, equal sharing also dictates that every category c ∈ CM(a) allocates to a either all

of its remaining capacity or a’s demand:

ξa,c = min{δLPa , qc −
∑

a′∈Âa,c

ξa′,c} for every c ∈ CM(a).

By construction, Âa,c = AQ(c) (see Claim 5 in Appendix A.4 for a formal statement); there-

fore, as ξa′,c = δLPa for every a′ ∈ AQ(c) and δLPa = da for every a′ ∈ AQ(c) \ ÃQ(c), we have

21

that∑
a′∈Âa,c

ξa′,c =
∑

a′∈AQ(c)

ξa′,c =
∑

a′∈ÃQ(c)

ξa′,c +
∑

a′∈AQ(c)\ÃQ(c)

ξa′,c =
∑

a′∈ÃQ(c)

δLPa′ +
∑

a′∈AQ(c)\ÃQ(c)

da′ .

Then, by definition, we have that

qc −
∑

a′∈Âa,c

ξa′,c = qc −
∑

a′∈AQ(c)\ÃQ(c)

da′ −
∑

a′∈ÃQ(c)

δLPa′ = q̃c −
∑

a′∈ÃQ(c)

δLPa′ .

It follows that

ξa,c = min

dLPa , q̃c −
∑

a′∈ÃQ(c)

δLPa′

 for every c ∈ CM(a). (2)

The objective is then to find an allocation ξ that satisfies (1) and (2) for every agent a ∈ Ã
and every category c ∈ CM(a). The agents’ demands can be substituted out by using (1),

which yields

ξa,c = min

1−
∑

c∈CM (a) ξa,c

|CQ(a)|
, q̃c −

∑
a′∈ÃQ(c)

δLPa′

 for every a ∈ Ã and every c ∈ CM(a).

Recalling (see Algorithm 3) that C̃ is the set of categories that have a marginal agent who is

qualified for another category and that, for every c ∈ C̃, c’s marginal agent is denoted a(c),

it follows that

ξa(c),c = min

1−
∑

c′∈CM (a(c)) ξa(c),c′

|CQ(a(c))|
, q̃c −

∑
a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|

 for every c ∈ C̃.

Finally, by definition c ∈ CM(a(c)) so the previous equation can be simplified to

ξa(c),c = min

1−
∑

c′∈CM (a(c))\{c} ξa(c),c′

|CQ(a(c))|+ 1
, q̃c −

∑
a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|

 for every c ∈ C̃.

There are |C̃| variables and |C̃| equations, one for each category c ∈ C̃; however those

equations are not linear. What the linear program (LP 1) does is, for each c ∈ C̃, turn that

category’s equation into two constraints and maximize ξa(c),c subject to those constraints.

I illustrate Algorithm 3 this works using Example 2. Round 4 is the first round in which

22

no status changes (see Table 2) so linear programming is used in Round 5. The inputs are

x = x4 =

c1 c2 c3

a1 5/12 3/12 5/12

a2 1/3 1/3 1/3

a3 3/12 5/12 5/12

a4 0 0 5/6

 and d = d4 =
(a1 a2 a3 a4

5/12 1/3 5/12 1
)
.

In the Linear Program Construction stage, we have that

CQ(a1) = {c1, c3} CQ(a2) = {c1, c2, c3} CQ(a3) = {c2, c3} CQ(a4) = ∅
CM(a1) = {c2} CM(a2) = ∅ CM(a3) = {c1} CM(a4) = {c3};

therefore, Ã = {a1, a2} and C̃ = {c1, c2} so we have that a(c1) = a3 and a(c2) = a1. It

follows that AQ(c1) = {a1, a2}, ÃQ(c1) = {a1}, AQ(c2) = {a2, a3}, and ÃQ(c2) = {a3}; hence

q̃c1 = q̃c2 = 1− da2 = 2/3.

In the Linear Program Solving stage, the linear program that must be solved is

max
(ξa3,c1 ,ξa1,c2)

ξa3,c1 + ξa1,c2

subject to ξa3,c1 ≤ 1/3,

ξa1,c2 ≤ 1/3,

ξa3,c1 ≤ 2/3− (1− ξa1,c2)/2,

ξa1,c2 ≤ 2/3− (1− ξa3,c1)/2.

Setting ξa3,c1 = ξa1,c2 = 1/3 makes all four constraints hold with an equality; hence the vector

(ξ∗a3,c1 , ξ
∗
a1,c2

= (1/3, 1/3) is the unique solution to the linear program. Then, the output of

Algorithm 3 is the demand vector

δLP =
(a1 a2 a3 a4

1/3 1/3 1/3 1
)
.

Returning to Round 5 of Algorithm 2, the linear programming stage has produced the

demand vector δ5 = δLP . The Capacity Allocation stage produces the SR allocation—

x5 = ξSR—and so the SRLP algorithm ends in Round 5 and outputs the SR allocation.

23

5 Conclusion

In this paper, I have proposed a new solution to rationing problems with reserves. In con-

trast to existing solutions, in which reserve categories are processed sequentially, I propose to

process them simultaneously. A key advantage of this approach is transparency: the Simul-

taneous Reserves (SR) allocation depends solely on the quotas reserved for each category and

how each category prioritizes agent, not on any processing order. The key idea is to allow

an agent who is allocated one unit in aggregate to receive parts of that unit from different

categories. In fact, I show that the SR allocation respects equal sharing : if an agent qualifies

for multiple categories, she receives the same amount of capacity from each of them. This

is in stark contrast to sequential processing, in which an agent who qualifies for multiple

categories receives one unit from whichever is processed first. I show that the SR allocation

satisfies three standard axioms—compliance with eligibility criteria, non-wastefulness, and

respect for priorities—and respects equal sharing. Moreover, any other allocation satisfying

those four properties allocates in aggregate the same amount of capacity to every agent.

Finally, I present a polynomial-time algorithm to compute the SR allocation.

This paper opens up various opportunities for future research, I conclude by briefly de-

scribing some of them. First, it might be possible to tweak the SR algorithm to handle

ties in the priority profile (see Kesten and Ünver (2015) for a similar approach without re-

serves). Priority ties are often present in real-world application and such a solution would

avoid having to break them through a lottery. Second, it would be valuable to explore how

the SR algorithm can be combined with the deferred acceptance mechanism (or any other

mechanism) so it can be used in matching markets. Third, it may be possible to generalize

the approach to sharing rules beyond equal sharing. If an agent qualifies for two categories,

with sequential processing the category processed first allocates one unit to that agent while

with equal sharing, each category allocates half a unit to the agent. One might consider any

sharing rule in between, which would convexity the set of solutions provided by sequential

allocation. Ultimately, the hope is that the ideas presented in this paper provide a new

perspective on rationing problems with reserves and pave the way to finding new solutions

for a wide range of applications.

24

References

Abdulkadiroglu, A., and T. Sönmez (2003): “School Choice: A Mechanism Design

Approach,” American Economic Review, 93(3), 729–747.

Aygun, O., and I. Bó (2020): “College admission with multidimensional privileges: The

Brazilian affirmative action case,” SSRN Working Paper, July 2020.

Aygun, O., and B. Turhan (2020): “Designing Direct Matching Mechanisms for India

with Comprehensive Affirmative Action,” SSRN Working Paper, May 2020.

Aygün, O., and B. Turhan (2020): “Dynamic Reserves in Matching Markets,” Journal

of Economic Theory, p. 105069.

Birkhoff, G. (1946): “Three observations on linear algebra,” Univ. Nac. Tacuman, Rev.

Ser. A, 5, 147–151.

Bogomolnaia, A., and H. Moulin (2001): “A new solution to the random assignment

problem,” Journal of Economic theory, 100(2), 295–328.

Budish, E., Y.-K. Che, F. Kojima, and P. Milgrom (2013): “Designing random

allocation mechanisms: Theory and applications,” American economic review, 103(2), 585–

623.

Dur, U., S. D. Kominers, P. A. Pathak, and T. Sönmez (2018): “Reserve design:

Unintended consequences and the demise of Boston’s walk zones,” Journal of Political

Economy, 126(6), 2457–2479.

Dur, U., P. A. Pathak, and T. Sönmez (2020): “Explicit vs. statistical targeting in af-

firmative action: Theory and evidence from Chicago’s exam schools,” Journal of Economic

Theory, 187, 104996.

Hylland, A., and R. Zeckhauser (1979): “The efficient allocation of individuals to

positions,” Journal of Political economy, 87(2), 293–314.

Kesten, O., and M. U. Ünver (2015): “A theory of school-choice lotteries,” Theoretical

Economics, 10(2), 543–595.

Khachiyan, L. G. (1979): “A polynomial algorithm in linear programming,” in Doklady

Akademii Nauk, vol. 244, pp. 1093–1096. Russian Academy of Sciences.

25

Kominers, S. D., and T. Sönmez (2016): “Matching with slot-specific priorities: Theory,”

Theoretical Economics, 11(2), 683–710.

Pathak, P. A., A. Rees-Jones, and T. Sönmez (2020a): “Immigration Lottery De-

sign: Engineered and Coincidental Consequences of H-1B Reforms,” NBER Working Paper

26767.

(2020b): “Reversing Reserves,” NBER Working Paper 26963.

Pathak, P. A., T. Sönmez, M. U. Ünver, and M. B. Yenmez (2020): “Fair Allocation

of Vaccines, Ventilators and Antiviral Treatments: Leaving No Ethical Value Behind in

Health Care Rationing,” Working Paper, July 2020.

Sönmez, T., and M. B. Yenmez (2019): “Affirmative action in India via vertical and

horizontal reservations,” Working paper, October 2019.

Sönmez, T., M. B. Yenmez, et al. (2019): “Constitutional implementation of vertical

and horizontal reservations in India: A unified mechanism for civil service allocation and

college admissions,” Working paper, April 2019.

Von Neumann, J. (1953): “A certain zero-sum two-person game equivalent to the optimal

assignment problem,” Contributions to the Theory of Games, 2, 5–12.

Westkamp, A. (2013): “An analysis of the German university admissions system,” Eco-

nomic Theory, 53(3), 561–589.

Yılmaz, O. (2020): “Rationing Medical Units in a Pandemic: Fair Allocation through

Reserves,” Working Paper.

26

A Proofs

The Appendix is organized as follows. I first prove a series of properties of the SR algo-

rithm in Appendix A.1, which I use in Appendix A.2 to prove the results from Section 3.

Appendix A.3 contains properties of the SRLP algorithm that mirror those of the SR algo-

rithm. In Appendix A.4, I use those properties to prove the results from Section 4.

A.1 Properties of the SR algorithm

I start with a series of regularity conditions.

Lemma 1. For every agent a and every Round i such that xia > 1, there exists a unique dia

such that
∑

c∈C min{dia, xia,c} = 1. Moreover, dia ∈ (0,maxc∈C{xia,c}).

Proof. If dia ≤ 0, then
∑

c∈C min{dia, xia,c} ≤ 0 < 1. If dia = maxc∈C{xia,c}, then
∑

c∈C min{dia,
xia,c} =

∑
c∈C x

i
a,c = xia > 1. The expression

∑
c∈C min{dia, xia,c} is continuous at every dia,

strictly increasing in dia at every dia ≤ maxc∈C{xia,c}, and constant in dia at every dia ≥
maxc∈C{xia,c}. Therefore, there exists a unique value of dia such that

∑
c∈C min{dia, xia,c} = 1

and that value is an element of (0,maxc∈C{xia,c}).

Lemma 2. For every Round i ≥ 1, xi is a pre-allocation and, for every agent a, dia ∈
[1/|C|, 1].

Proof. (dia ∈ [0, 1]) Towards a contradiction, suppose that dia /∈ [0, 1]. By definition, xia ≥ 1 as

otherwise dia = 1. If xia = 1, then dia = maxc∈C{xia,c}. If xia > 1, then dia ∈ (0,maxc∈C{xia,c})
by Lemma 1. In both cases, it follows that there exists a category c ∈ C such that xia,c /∈
[0, 1]. Then, a is eligible for c, as otherwise xia,c = 0; therefore, xia,c = min{di−1a ,max{qc −∑

a′∈Âa,c
di−1a′ , 0}}, which implies that di−1a /∈ [0, 1]. By induction, it follows that d0a /∈ [0, 1], a

contradiction since d0a = 1.

(xi is a pre-allocation) What needs to be shown is that xia,c ∈ [0, 1] for all a ∈ A and all

c ∈ C and that
∑

a∈A x
i
a,c ≤ qc for all c ∈ C. Consider any agent a and any category c. If

xia,c /∈ [0, 1], it was established in the first part of this proof that di−1a /∈ [0, 1], a contradiction.

It remains to show that
∑

a∈A x
i
a,c ≤ qc for all c ∈ C. Consider any category c and

suppose towards a contradiction that
∑

a∈A x
i
a,c > qc. Then, there exists an agent a such

that xa,c > 0 and xia,c +
∑

a′∈Âa,c
xia′,c > qc. By definition, xia,c ≤ di−1a′ for all a′ ∈ Âa,c so

xia′,c +
∑

a′∈Âa,c
di−1a′ > qc or, equivalently, xia′,c > qc −

∑
a′∈Âa,c

di−1a′ . Again by definition,

xia,c ≤ max{qc −
∑

a′∈Âa,c
di−1a′ , 0}; therefore it must be that xa′,c = 0, a contradiction.

(dia ≥ 1/|C|) If xia < 1, the statement is trivially satisfied as dia = 1 by definition. If

xia = 1, then dia = max{c ∈ C}{xia,c}. As
∑

c∈C x
i
a,c = 1 and xia,c ∈ [0, 1], we have that

27

maxc∈C{xia,c} ≥ 1/|C| so dia ≥ 1/|C|. If xia > 1, then
∑

c∈C min{dia, xia,c} = 1; therefore, we

have that
∑

c∈C d
i
a ≥ 1 so |C|dia ≥ 1, which is equivalent to dia ≥ 1/|C|.

For every Round i ≥ 1, let ξi to be the Round i allocation (as opposed to the Round i pre-

allocation xi) defined as follows. For every agent a and every category c, ξia,c = min{dia, xia,c}.

Lemma 3. For every Round i ≥ 1, ξi is an allocation and, for every agent a, ξia = min{xia, 1}.

Proof. (ξia = min{xia, 1}) Case 1 : xia ≤ 1. If xia < 1, then by definition dia = 1 and xia,c < 1

for all c ∈ C. If xia = 1, then by definition dia = maxc∈C{xia,c}. It follows that xia,c ≤ dia for

all c ∈ C; therefore,

ξia =
∑
c∈C

ξia,c =
∑
c∈C

min{dia, xia,c} =
∑
c∈C

xia,c = xia = min{xia, 1}.

Case 2 : xia > 1. By definition, dia satisfies
∑

c∈C min{dia, xia,c} = 1. It follows that

ξia =
∑
c∈C

ξia,c =
∑
c∈C

min{dia, xia,c} = 1 = min{xia, 1}.

(ξi is an allocation) By definition, for every agent a and every category c, ξia,c = min{dia, xia,c}.
As dia, x

i
a,c ∈ [0, 1], it follows that ξia,c ∈ [0, 1]. Moreover,

∑
a∈A ξ

i
a,c ≤

∑
a∈A x

i
a,c ≤ qc.

Therefore, ξi is a pre-allocation and it remains to show that ξa ≤ 1 for all a ∈ A, which

follows from the previously established result that ξia = min{xia, 1} for all a ∈ A.

The next lemma states that the total amount that each agent is allocated weakly increases

throughout the algorithm while each agent’s demand decreases throughout the algorithm. For

notational convenience, let ξ0 = 0|A|×|C|.

Lemma 4. For every Round i of the SR algorithm and every agent a, ξia ≥ ξi−1a and dia ≤ di−1a .

Proof of Lemma 4

By definition, ξ0a = 0 and d0a = 1 and, by Lemmas 2 and 3, ξia, d
i
a ∈ [0, 1]; therefore the

statement holds for Round 1: ξ1a ≥ ξ0a and d1a ≤ d0a.

The remainder of the proof is by induction. For some i ≥ 2, suppose that ξi−1a ≥ ξi−2a and

di−1a ≤ di−2a for all a ∈ A (induction hypothesis). I show that ξia ≥ ξi−1a and dia ≤ di−1a .

(ξia ≥ ξi−1a) Consider any category c. If a is not eligible for c, then by definition xi−1a,c =

xia,c = 0 and ξi−1a,c = min{di−1a , xi−1a,c } = 0; hence xia,c = ξi−1a,c = 0. If a is eligible for c, then by

definition

xi−1a,c = min{di−2a ,max{qc −
∑

a′∈Âa,c

di−2a′ , 0}};

28

therefore,

ξi−1a,c = min{di−1a , di−2a ,max{qc −
∑

a′∈Âa,c

di−2a′ , 0}}.

By the induction hypothesis, di−1a ≤ di−2a ; hence

ξi−1a,c = min{di−1a ,max{qc −
∑

a′∈Âa,c

di−2a′ , 0}}. (3)

By definition,

xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c

di−1a′ , 0}}. (4)

The induction hypothesis implies that di−1a′ ≤ di−2a′ for all a′ ∈ Âa,c; therefore the right-hand

side of (4) is weakly larger than the right-hand side of (3) and xia,c ≥ ξi−1a,c .

The previous argument has established that xia,c ≥ ξi−1a,c for all c ∈ C; hence xia ≥ ξi−1a .

Combining Lemma 3 with that result and the fact that ξi−1a ≤ 1 yields

ξia = min{xia, 1} ≥ min{ξi−1a , 1} = ξi−1a ,

which implies that ξia ≥ ξi−1a .

(dia ≤ di−1a) Case 1 : xia < 1. Lemma 3 and the previously established result that ξia ≥ ξi−1a

imply that

min{xia, 1} = ξia ≥ ξi−1a = min{xi−1a , 1}.

It follows that min{xia, 1} ≥ min{xi−1a , 1}, which combined with the case assumption that

xia < 1 implies that xi−1a < 1. By definition, it can therefore be concluded that dia = di−1a = 1.

Case 2 : xia ≥ 1. If xia = 1, then by definition dia = maxc∈C{xia,c}. If xia > 1, then by

definition
∑

c∈C min{dia, xia,c} = 1. Supposing that dia > maxc∈C{xia,c} yields∑
c∈C

min{dia, xia,c} =
∑
c∈C

xia,c = xia > 1,

a contradiction. Therefore, the case assumption that xia ≥ 1 implies that dia ≤ maxc∈C{xia,c}.
By definition, for every c ∈ C, xia,c = min{di−1a ,max{qc −

∑
a′∈Âa,c

di−1a′ , 0}} ≤ di−1a ;

therefore maxc∈C{xia,c} ≤ di−1a , which means that dia ≤ di−1a .

Lemma 5. For every Round i and every agent a,

dia =

{
1 if ξia < 1

maxc∈C{ξia,c} if ξia = 1.

29

Proof. Case 1 : xia < 1. In that case, by Lemma 3, ξia = xia < 1 and, by definition, dia = 1.

Case 2 : xia = 1. In that case, by Lemma 3, ξia = xia = 1. By definition, dia = maxc∈C{xa,c}
and, for every c ∈ C, ξia,c = min{dia, xia,c}. Combining those two results implies that ξia,c = xia,c

for all c ∈ C, and therefore dia = max{ξa,c}.
Case 3 : xia > 1. In that case, by Lemma 3, ξia = 1 so it remains to show that dia =

maxc∈C{ξia,c}. If dia < maxc∈C{ξia,c}, then there exists c ∈ C such that dia < ξia,c. However, by

definition, ξia,c = min{dia, xia,c} ≤ dia, a contradiction. If dia > maxc∈C{ξia,c}, then by definition

dia > maxc∈C{min{dia, xia,c}}; therefore dia > xia,c for all c ∈ C so
∑

c∈C min{dia, xia,c} =∑
c∈C x

i
a,c = xia > 1. However, by definition,

∑
c∈C min{dia, xia,c} = 1, a contradiction.

Lemma 6. For every Round i and every agent a, ξia = 1 if and only if there exists a category c

such that ξia,c = dia.

Proof. If ξia < 1, then ξia,c < 1 for all c ∈ C and, by Lemma 5, dia = 1; therefore, ξia,c < dia for

all c ∈ C. If ξia = 1, then dia = maxc∈C{ξia,c} by Lemma 5; hence there exists c ∈ C such that

ξia,c = dia.

Lemma 7. For every Round i, every agent a, and every category c, either xia,c < di−1a or

ξia,c < dia implies that xia′,c = ξia′,c = 0 for every lower-priority agent a′ ∈ Ǎa,c.

Proof. By definition, ξia,c < dia implies that ξia,c = xia,c; hence, as dia ≤ di−1a by Lemma 4, it

follows that xia,c < di−1a . Moreover, again by definition, we have that ξia′,c = 0 if and only if

xia′,c = 0. Therefore, it is sufficient to show that xia,c < di−1a implies that xia′,c = 0 for every

lower-priority agent a′ ∈ Ǎa,c.
Suppose that xia,c < di−1a and consider an arbitrary lower-priority agent a′ ∈ Ǎa,c. I show

that xia′,c = 0. If a′ is not eligible for c, the desired result holds trivially since, by definition,

xia′,c = 0. For the remainder of the proof, I assume that a′ is eligible for c, which implies

that a is eligible for c as well.

As aπca
′, the assumption that a′ is eligible for c implies that a is also eligible for c.

Therefore, by definition, we have that

xia,c = min{di−1a ,max{qc −
∑
ã∈Âa,c

di−1ã , 0}} < di−1a ,

which implies that qc −
∑

ã∈Âa,c
di−1ã < di−1a or, equivalently, qc −

∑
ã∈Âa,c

di−1ã − di−1a < 0. As

aπca
′, it follows that

qc −
∑

ã∈Âa′,c

di−1ã ≤ qc −
∑
ã∈Âa,c

di−1ã − di−1a < 0. (5)

30

Moreover, as a′ is eligible for c, we have that

xia′,c = min{di−1a ,max{qc −
∑

ã∈Âa′,c

di−1ã , 0}}. (6)

Combining (5) and (6) yields xia′,c = 0.

Lemma 8. For every Round i, every agent a, and every category c, ξia,c > 0 implies that

xia′,c = di−1a′ and ξia′,c = dia′ for every higher-priority agent a′ ∈ Âa,c.

Proof. Suppose that ξia,c > 0. By definition, it must be that xia,c > 0 so a is eligible for c and

qc >
∑

a′∈Âa,c

di−1a′ . (7)

Consider any higher-priority agent a′ ∈ Âa,c. It needs to be shown that ξia′,c = dia′ . By (7),

qc > di−1a′ +
∑

ã∈Âa′,c
di−1ã , which is equivalent to

qc −
∑

ã∈Âa′,c

di−1ã > di−1a′ . (8)

As a is eligible for c, so is a′; hence by definition xia′,c = min{di−1a′ ,max{qc−
∑

ã∈Âa′,c
di−1ã , 0}}.

By (8), it follows that xia′,c = di−1a′ . By Lemma 4, dia′ ≤ di−1a′ ; hence xia′,c ≥ dia′ . Using that

inequality in conjunction with the definition of ξia′,c yields ξia′,c = min{dia′ , xia′,c} = dia′ .

Together, Lemmas 7 and 8 allow defining each category’s marginal agents in Round i.

If all eligible agents are allocated their demand, the marginal agent is ∅. Otherwise, the

marginal agent is the highest-priority agent who is not allocated her demand.

Lemma 9. For every agent a and category c such that a is eligible for c, and for every

Round i, xia,c < di−1a implies that xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Proof. Let ã be the highest-priority agent such that xiã,c < di−1ã . That is, xiã,c < di−1ã and,

for every a ∈ Âã,c, x
i
a′,c = di−1a′ . The assumption that xia,c < di−1a ensures that ã exists

and either ã = a or ãπca. Then, as a is eligible for c, so is ã and we have that xiã,c =

min{di−1a ,max{qc −
∑

a′∈Âã,c
di−1a′ , 0}}. As xiã,c < di−1ã and xia′,c = di−1a′ for all a′ ∈ Âã,c, it

follows that xiã,c = max{qc −
∑

a′∈Âã,c
xia′,c, 0}. As xi is a pre-allocation (by Lemma 2), it

must be that
∑

a′∈Âã,c
xi−1a′,c ≤ qc; therefore we can conclude that xiã,c = qc −

∑
a′∈Âã,c

xia′,c or,

equivalently, xiã,c +
∑

a′∈Âã,c
xia′,c = qc.

31

On the one hand, as either ã = a or ãπca, we have that xia,c +
∑

a′∈Âa,c
xia′,c ≥ xiã,c +∑

a′∈Âã,c
xia′,c = qc. On the other hand, as xi is an allocation, we have that xia,c+

∑
a′∈Âa,c

xia′,c ≤
qc. Combining the two statements yields xia,c +

∑
a′∈Âa,c

xia′,c = qc.

Lemma 10. In every Round i, xi satisfies Axioms 1-4 and ξi satisfies Axioms 1 and 3.

Proof. (xi and ξi comply with eligibility requirements) By definition, if an agent a is not

eligible for a category c, then xia,c = ξia,c = 0.

(xi is non-wasteful) Consider any category c such that
∑

a∈A x
i
a,c < qc and any agent a

who is eligible for c. It needs to be shown that xia ≥ 1.

Case 1 : xia,c = di−1a . By the case assumption and Lemma 4, xia,c = di−1a ≥ dia; hence, by

definition, ξia,c = min{dia, xia,c} = dia. By Lemma 6, it follows that ξia = 1 so, by definition,

xia ≥ ξia = 1.

Case 2 : xia,c < di−1a . In that case, Lemma 9 applies and yields xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Then, we have that
∑

a∈A x
i
a,c ≥ xia,c +

∑
a′∈Âa,c

xia′,c = qc, which contradicts the assumption

that
∑

a∈A x
i
a,c < qc.

(xi and ξi respect priorities) Arbitrarily fix an agent a and a category c. By Lemma 3,

xia < 1 if and only if ξia < 1 and, by definition, xia,c = 0 if and only if ξia,c. It follows that

xi respects priorities if and only if ξi respects priorities; hence it is enough to show that ξi

respects priorities. Suppose that ξia < 1. In order to establish that ξi respects priorities,

I need to show that, for every lower-priority agent a′ ∈ Ǎa,c, ξ
i
a′,c = 0. By Lemma 6, the

assumption that ξia < 1 implies that ξia,c < dia so, by Lemma 7, ξia′,c = 0.

(xi respects equal sharing) Consider any agent a and any category c such that a is eligible

for c and xia,c < maxc′∈C{xa,c′}. It needs to be shown that xia,c +
∑

a′∈Âa,c
xa′,c = qc. By

definition, maxc′∈C{xia,c′} ≤ di−1a ; hence we have that xia,c < di−1a . Then, by Lemma 9, we

have that xia,c +
∑

a′∈Âa,c
xia′,c = qc.

For every Round i ≥ 1, I define the excess supply in Round i to be the |A|×|C| matrix

zi = (zia,c)a∈A,c∈C such that, for every agent a and every category c, zia,c = xia,c−ξia,c. I denote

by zia =
∑

c∈C z
i
a,c the excess supply of agent a in Round i. By construction and using

Lemma 3, zia = xia − ξia = max{xia − 1, 0} so zia can be interpreted as the capacity that a is

allocated in Round i in excess of the one unit she needs. I denote by |zi| =
∑

a∈A
∑

c∈C z
i
a,c =∑

a∈A z
i
a the total excess supply in Round i, which can be interpreted as the amount

of capacity allocated to agents who do not need it and that can be reallocated in the next

round. The next result introduces basic properties of the excess demand.

Lemma 11. For every agent a and every category c, zia,c ∈ [0, 1]. Moreover, |zi| = 0 if and

only if xi = ξi.

32

Proof. (zia,c ∈ [0, 1]) By definition, zia,c = xia,c−ξia,c = xia,c−min{dia, xia,c} = max{xia,c−dia, 0}.
As xia,c, d

i
a ∈ [0, 1] (by Lemma 2), it follows that zia,c ∈ [0, 1].

(|zi| = 0 if and only if xi = ξi) If xi = ξi, then, for every a ∈ A and every c ∈ C, xa,c = ξa,c

so za,c = xa,c − ξa,c = 0. It follows that |zi| =
∑

a∈A
∑

c∈C z
i
a,c = 0. If xi 6= ξi, then there

exist a ∈ A and c ∈ C such that xia,c 6= ξia,c so za,c 6= 0. As zia,c ∈ [0, 1] for all a ∈ A and all

c ∈ C, it follows that |zi| =
∑

a∈A
∑

c∈C z
i
a,c > 0.

Lemma 12. Suppose that, for some Round i ≥ 1, |zi| = 0. Then, for every Round j ≥ i,

|zj| = 0, xj = ξj = xi = ξi, and, for every agent a, dja = dia.

Proof. Fix an agent a and a category c arbitrarily. The main part of the proof consists in

showing that xi+1
a,c = xia,c. By definition, if a is not eligible for c, then xi+1

a,c = xia,c = 0;

therefore I focus throughout on the case in which a is eligible for c.

(xi+1
a,c ≥ xia,c) By definition, xi+1

a,c = min{dia,max{qc −
∑

a′∈Âa,c
dia′ , 0}}. By assumption,

|zi| = 0 so, by Lemma 11, xia,c = ξia,c. As, by definition, ξia,c = min{xia,c, dia}, it follows that

xia,c ≤ dia. Therefore, it remains to show that xia,c ≤ max{qc −
∑

a′∈Âa,c
dia′ , 0}.

By definition, xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c
di−1a′ , 0}}; hence xia,c ≤ max{qc −∑

a′∈Âa,c
di−1a′ , 0}. By Lemma 4,

∑
a′∈Âa,c

di−1a′ ≥
∑

a′∈Âa,c
dia′ ; therefore, we have that xia,c ≤

max{qc −
∑

a′∈Âa,c
di−1a′ , 0} ≤ max{qc −

∑
a′∈Âa,c

dia′ , 0}.
(xi+1

a,c ≤ xia,c) Case 1 : aπcã. By the case assumption, xia,c = di−1a . By definition, xi+1
a,c =

min{dia,max{qc −
∑

a′∈Âa,c
dia′ , 0}} so xi+1

a,c ≤ dia. By Lemma 4, dia ≤ di−1a ; therefore, we have

that xi+1
a,c ≤ dia ≤ di−1a = xia,c.

Case 2 : a = ã. By the case assumption, xia,c < di−1a and xia′,c = di−1a′ for every a′ ∈ Âa,c.
By definition, xia,c = min{di−1a ,max{qc −

∑
a′∈Âa,c

di−1a′ , 0}} so, as xia,c < di−1a , we have that

xia,c = max{qc −
∑

a′∈Âa,c

di−1a′ , 0}. (9)

Again by definition, we have that

xi+1
a,c = min{dia,max{qc −

∑
a′∈Âa,c

dia′ , 0}}. (10)

For every a′ ∈ Âa,c, xia′,c = di−1a′ by the case assumption, xia′,c = xi+1
a′,c by the result shown in

Case 1, xi+1
a′,c ≤ dia′ by definition, and dia′ ≤ di−1a′ by Lemma 4. Therefore, it can be concluded

that dia′ = di−1a′ for all a′ ∈ Âa,c. Combining that result with (9) and (10) yields

xi+1
a,c ≤ max{qc −

∑
a′∈Âa,c

dia′ , 0} = max{qc −
∑

a′∈Âa,c

di−1a′ , 0} = xia,c.

33

Case 3 : ãπca. By definition, as xiã,c < di−1ã , xiã,c = max{qc −
∑

a′∈Âa,c
di−1a′ , 0}. As was

shown in Case 2, dia′ = di−1a′ for all a′ ∈ Âã,c; therefore we have that xiã,c = max{qc −∑
a′∈Âa,c

dia′ , 0}, which implies that qc − xiã,c −
∑

a′∈Âa,c
dia′ ≤ 0. As was shown in Case 2,

xiã,c = xi+1
ã,c and, by definition, xi+1

ã,c ≤ diã; therefore, we have that qc − diã −
∑

a′∈Âa,c
dia′ ≤ 0.

As ãπca,
∑

a′∈Âa,c
dia′ ≥ diã+

∑
a′∈Âã,c

dia′ ; hence it follows that qc−
∑

a′∈Âa,c
dia′ ≤ 0. Combining

that last inequality with the definition of xi+1
a yields xi+1

a = 0. By Lemma 2, xia ≥ 0 so it can

be concluded that xi+1
a ≤ xia.

As a and c were chosen arbitrarily, xi+1
a,c = xia,c holds for every agent and every category;

therefore we have that xi+1 = xi. Then, by definition, di+1
a = dia for every agent a, and

ξi+1 = ξi. The result extends to every j > i+ 1 by induction.

Lemma 13. Suppose that, for some agent a, some category c, and some Round i ≥ 1,

xia,c < dia. Then, for every j ≤ i, xja,c ≤ xia,c < dja.

Proof. If a is not eligible for c, then xja,c = 0 for every j ≥ 1 and the result holds as, by

Lemma 2, dja > 0. The remainder of the proof focuses on the case in which a is eligible for c.

By definition, xia,c = min{di−1a ,max{qc−
∑

a′∈Âa,c
di−1a′ , 0}} and, by Lemma 4, the assump-

tion that xia,c < dia implies that xia,c < di−1a . It follows that xia,c = max{qc −
∑

a′∈Âa,c
di−1a′ , 0}.

Again by definition, xi−1a,c ≤ max{qc −
∑

a′∈Âa,c
di−2a′ , 0} and, by Lemma 4,

∑
a′∈Âa,c

di−2a′ ≥∑
a′∈Âa,c

di−1a′ ; hence we have that xi−1a,c ≤ xia,c < di−1a . By induction, the statement holds for

every j ≤ i.

Lemma 14. Suppose that, for some agent a, some category c and some Round i ≥ 1,

xia,c ≥ dia. Then, for every j > i, xja,c = dj−1a ≥ dja.

Proof. By definition, xia,c ≤ max{qc −
∑

a′∈Âa,c
di−1a′ , 0}, which, combined with the assump-

tion that xia,c ≥ dia, implies that max{qc −
∑

a′∈Âa,c
di−1a′ , 0} ≥ dia. By Lemma 4, it follows

that max{qc −
∑

a′∈Âa,c
dia′ , 0} ≥ dia. By definition, we have that xi+1

a,c = min{dia,max{qc −∑
a′∈Âa,c

dia′ , 0}} = dia. Then, by Lemma 4, it follows that xi+1
a,c = dia ≥ di+1

a and the statement

holds for all j > i by induction.

Lemma 15. For every allocation ξ∗ that satisfies Axioms 1-4, every Round i of the SR

algorithm, every agent a, and every category c, ξ∗a ≥ ξia and ξ∗a,c ≤ dia.

Proof. By definition, for every agent a and every category c, d0a = 1 and ξ∗ is an allocation so

ξ∗a,c ≤ 1 = d0a. The remainder of the proof is by induction. Arbitrarily fixing a Round i ≥ 1,

I assume that ξ∗a,c ≤ di−1a for every agent a and every category c (induction hypothesis) and

show that ξ∗a ≥ ξia and ξ∗a,c ≤ dia for every agent a and every category c.

34

(ξ∗a ≥ ξia for every a ∈ A) Arbitrarily fix an agent a. By Lemma 3, ξ∗a ≤ 1 and ξia ≤ 1

so the desired result holds trivially if ξ∗a = 1, and therefore only the case in which ξ∗a < 1

needs to be considered. Arbitrarily fixing a category c, I show that, in this case, ξ∗a,c ≥ ξia,c.

That result holds trivially if ξia,c = 0; hence I assume for the remainder of the argument that

ξia,c > 0.

As ξi complies with eligibility requirements (by Lemma 10), the assumption that ξia,c > 0

implies that a is eligible for c; hence, by definition, we have that

ξia,c = min{dia, xia,c} = min{dia, di−1a ,max{qc −
∑

a′∈Âa,c

di−1a′ , 0}}.

It follows that ξia,c ≤ max{qc −
∑

a′∈Âa,c
di−1a′ , 0} so the assumption that ξia,c > 0 implies that

ξia,c ≤ qc −
∑

a′∈Âa,c

di−1a′ . (11)

By the induction hypothesis, ξ∗a′,c ≤ di−1a′ for every a′ ∈ Âa,c; therefore (11) implies that

ξia,c ≤ qc −
∑

a′∈Âa,c
ξ∗a,c, which is equivalent to

ξia,c +
∑

a′∈Âa,c

ξ∗a,c ≤ qc. (12)

By assumption, ξ∗a,c is non-wasteful and ξ∗a < 1; hence, as a is eligible for c, we have that

ξ∗a,c +
∑

a′∈Âa,c

ξ∗a,c = qc. (13)

Combining (12) and (13) implies that ξ∗a,c ≥ ξia,c. As c was chosen arbitrarily, that inequality

holds for all categories and it can be concluded that ξ∗a =
∑

c∈C ξ
∗
a,c ≥

∑
c∈C ξ

i
a,c = ξia. As a

was chosen arbitrarily, it follows that ξ∗a ≥ ξia for every a ∈ A.

(ξ∗a,c ≤ dia for every a ∈ A and every c ∈ C) Arbitrarily fix an agent a and a category c.

Towards a contradiction, suppose that ξ∗a,c > dia. As ξ∗a,c ≤ 1 (by Lemma 3), it follows that

dia < 1. Then, Lemma 5 implies that dia = maxc′∈C{ξia,c′} and ξia = 1. It follows that

ξia,c ≤ max
c′∈C
{ξia,c′} = dia < ξ∗a,c ≤ max

c′∈C
{ξ∗a,c′}. (14)

Moreover, as ξ∗a ≤ 1 (by Lemma 3) and as it was established in the previous part of the proof

35

that ξ∗a ≥ ξia, the fact that ξia = 1 implies that

ξia =
∑
c′∈C

ξia,c′ =
∑
c′∈C

ξ∗a,c′ = ξ∗a = 1. (15)

As (14) implies that ξia,c < ξ∗a,c, it follows by (15) that there exists a category c̃ ∈ C such that

ξ∗a,c̃ < ξia,c̃. (16)

By definition, ξia,c̃ ≤ maxc′∈C{ξia,c′} and, by (14), maxc′∈C{ξia,c′} ≤ maxc′∈C{ξ∗a,c′}; therefore,

(16) implies that ξ∗a,c̃ < maxc′∈C{ξ∗a,c′}. As ξ∗ respects equal sharing (by assumption), it

follows that

ξa,c̃ +
∑

a′∈Âa,c̃

ξ∗a′,c̃ = qc̃. (17)

Next, (16) implies that ξia,c̃ > 0. As ξi complies with eligibility requirements (by Lemma 10),

it follows that a is eligible for c̃ so, by definition,

ξia,c̃ = min{dia, xia,c̃} = min{dia, di−1a ,max{qc̃ −
∑

a′∈Âa′,c̃

di−1a′ , 0}}.

It follows that ξia,c̃ ≤ max{qc̃ −
∑

a′∈Âa′,c̃
di−1a′ , 0}; hence ξia,c̃ > 0 implies that ξia,c̃ ≤ qc̃ −∑

a′∈Âa′,c̃
di−1a′ or, equivalently, ξia,c̃ +

∑
a′∈Âa′,c̃

di−1a′ ≤ qc̃. By the induction hypothesis, ξ∗a,c̃ ≤
di−1a′ for every a′ ∈ Âa,c̃; hence we have that ξia,c̃ +

∑
a′∈Âa′,c̃

ξ∗a′,c̃ ≤ qc̃. By (17), it follows that

ξia,c̃ ≤ ξ∗a,c̃, which contradicts (16).

Lemma 16. For every agent a and every allocation ξ∗ that satisfies Axioms 1-4, maxc∈C{ξ∗a,c} ≤
maxc∈C{ξSRa,c }.

Proof. Towards a contradiction, suppose to the contrary that maxc∈C{ξ∗a,c} > maxc∈C{ξSRa,c }.
Then, there exists a category c′ such that ξ∗a,c′ > ξSRa,c′ . By Theorem 3, we have that ξ∗a = ξSRa

so, by definition,
∑

c∈C ξ
∗
a,c =

∑
c∈C ξ

SR
a,c . Then, the fact that ξ∗a,c′ > ξSRa,c′ implies there exists

a category c̃ such that

ξ∗a,c̃ < ξSRa,c̃ . (18)

It follows that ξ∗a,c̃ < maxc∈C{ξ∗a,c} so, as ξ∗ respects equal sharing, we have that ξ∗a,c̃ +∑
a′∈Âa,c

ξ∗a′,c̃ = qc̃. Moreover, ξSRa,c̃ +
∑

a′∈Âa,c
ξSRa′,c̃ ≤ qc̃ by definition since ξSR is an allocation.

It follows that

ξSRa,c̃ +
∑

a′∈Âa,c

ξSRa′,c̃ ≤ ξ∗a,c̃ +
∑

a′∈Âa,c

ξ∗a′,c̃,

36

which combined with (18) implies that∑
a′∈Âa,c

ξSRa′,c̃ <
∑

a′∈Âa,c

ξ∗a′,c̃. (19)

By (18), we have that ξSRa,c̃ > 0; hence, by definition, limi→∞ ξ
i
a,c̃ > 0. Similarly, (19)

implies by definition that limi→∞
∑

a′∈Âa,c
ξia′,c̃ <

∑
a′∈Âa,c

ξ∗a′,c̃. Therefore, there exists a

Round i such that

ξia,c̃ > 0 and (20)∑
a′∈Âa,c̃

ξia′,c̃ <
∑

a′∈Âa,c̃

ξ∗a′,c̃. (21)

By Lemma 8, (20) implies that ξia,c̃ = dia′ for all a′ ∈ Âa,c, which combined with (21) implies

that
∑

a′∈Âa,c̃
dia′ <

∑
a′∈Âa,c̃

ξ∗a′,c̃. Therefore, there exists an agent a′ ∈ Âa,c̃ such that dia′ <

ξ∗a′,c̃, which contradicts Lemma 15.

A.2 Proof of the results from Section 3

Proof of Theorem 1

I have shown in the main text that ξSR is well-defined and equal to both limi→∞ x
i and

limi→∞ ξ
i. It remains to show that ξSR is an allocation. Arbitrarily fix an agent a and a

category c. By definition, it needs to be shown that (i) ξSRa,c ∈ [0, 1], (ii)
∑

a′∈A ξ
SR
a′,c ≤ qc, and

(iii) ξSRa ≤ 1.

(ξSRa,c ∈ [0, 1]) Case 1: ξia,c < dia for every i ≥ 1. By definition, the case assumption implies

that xia,c < dia for every i ≥ 1, which by Lemma 13 implies that xja,c ≤ xia,c < dja for every

i, j ≥ 1 with j ≤ i. By definition, it follows that the series {ξia,c}∞i=1 is weakly increasing.

By Lemma 2, that series is bounded. Then, the Monotone Convergence Theorem implies

that limi→∞ ξ
i
a,c is equal to the series’ supremum. By Lemma 2, every element of the series

{ξia,c}∞i=1 is an element of [0, 1]; hence so is its supremum.

Case 2: ξia,c = dia for some i ≥ 1. By definition, the case assumption implies that xia,c ≥ dia;

hence Lemma 14 implies that xja,c ≥ dja for every j ≥ i. Again by definition, it follows that

ξja,c = dja for all j ≥ i, which implies that limi→∞ ξ
i
a,c = limi→∞ d

i
a so it remains to show that

limi→∞ d
i
a ∈ [0, 1].

The series {dia}∞i=1 is weakly decreasing by Lemma 4 and bounded below by Lemma 2.

By the Monotone Convergence Theorem, limi→∞ d
i
a is then equal to the infimum of the series

{dia}∞i=1. By Lemma 2, every element of that series is an element of [1/|C|, 1]; hence so is its

37

infimum.

(
∑

a′∈A ξ
SR
a,c ≤ qc) As limi→∞ ξ

i
a′,c ∈ [0, 1] for every a′ ∈ A,

∑
a′∈A ξ

SR
a′,c = limi→∞(

∑
a′∈A ξ

i
a′,c) =∑

a′∈A(limi→∞ ξ
i
a′,c) converges to a real number. By Lemma 3, ξi is an allocation for every

i ≥ 1; therefore every element of the series {
∑

a′∈A ξ
i
a′,c}∞i=1 is weakly smaller than qc. Then,

the number to which the series converges cannot exceed qc.

(ξSRa ≤ 1) As limi→∞ ξ
i
a,c′ ∈ [0, 1] for every c′ ∈ C, ξSRa =

∑
c′∈C ξ

SR
a,c′ = limi→∞(

∑
c′∈C ξ

i
a,c′) =∑

c′∈C(limi→∞ ξ
i
a,c′) is equal to a real number. By Lemma 3, ξi is an allocation for every i ≥ 1;

therefore every element of the series {ξia}∞i=1 is weakly smaller than 1. Then, the number to

which the series converges cannot exceed 1.

Proof of Proposition 2

(|zi+1| ≤ |zi|) By definition, |zi+1| = |xi+1| − |ξi+1| and |zi| = |xi| − |ξi and, by Lemma 4,

|ξi+1| ≥ |ξi|; therefore, it remains to show that |xi+1| ≤ |xi|.
Consider first any category c such that

∑
a∈A x

i
a,c < qc. I show that, for every a ∈ A,

xia,c =

{
0 if a is not eligible for c

di−1a if a is eligible for c.
(22)

If a is not eligible for c, then xia,c = 0 by definition; therefore, it remains to show that,

if a is eligible for c, then xia,c = di−1a . Towards a contradiction, suppose that a is eligible

for c and xia,c 6= di−1a . Let ã be the highest-priority agent in that situation; that is, ã is

eligible for c, xiã,c 6= di−1ã , and, for every a′ ∈ Âã,c, xia′,c = dia′ . By definition, as ã is eligible

for c, xiã,c = min{di−1ã ,max{qc−
∑

a′∈Âã,c
di−1a′ , 0}} so the assumption that xiã,c 6= di−1ã implies

that xiã,c < di−1ã . It follows that xiã,c = max{qc −
∑

a′∈âã,c d
i−1
a′ , 0}; therefore, qc − xiã,c −∑

a′∈Âã,c
di−1a′ ≤ 0. Combining the last inequality with the assumption that xia′,c = di−1a′

for every a′ ∈ Âã,c yields qc − xiã,c −
∑

a′∈Âã,c
xia′,c ≤ 0. It can then be concluded that∑

a∈A x
i
a,c ≥ xiã,c +

∑
a′∈Âã,c

xia′,c ≥ qc, a contradiction; hence (22) holds for every agent a.

Letting Ac = {a ∈ A : aπc∅} denote the set of agents that are acceptable for c, it follows that∑
a∈A x

i
a,c =

∑
a∈Ac

di−1a .

Consider now any category c′. By Lemma 2,
∑

a∈A x
i
a,c′ ≤ qc′ and, by the previous argu-

ment,
∑

a∈A x
i
a,c′ < qc′ implies that

∑
a∈A x

i
a,c′ =

∑
a∈Ac′

di−1a . It follows that
∑

a∈A x
i
a,c′ =

min{qc′ ,
∑

a∈Ac′
di−1a } for every c′ ∈ C. Therefore, we have that |xi| =

∑
c′∈C min{qc′ ,∑

a∈Ac′
di−1a } and, analogously, |xi+1| =

∑
c′∈C min{qc′ ,

∑
a∈Ac′

dia}; hence, Lemma 4 implies

that |xi+1| ≤ |xi|.

38

(|zi| ≤ |A|(|C| − 1)/i)) Fix an agent a and a category c. I first show that

i∑
j=1

zja,c ≤ 1− 1/|C|. (23)

By definition,

i∑
j=1

zja,c =
i∑

j=1

(xja,c − ξja,c) =
i∑

j=1

(xja,c −min{dja, xja,c}) =
i∑

j=1

max{xja,c − dja, 0}. (24)

If xja,c ≤ dja for all j = 1, . . . , i, then (23) holds trivially as (24) implies that
∑i

j=1 z
j
a,c = 0.

Otherwise, let k = 1, . . . , i be the first round in which a receives her demand from c; that

is, xka,c ≥ dka and xja,c < dja for all j = 1, . . . , k − 1. Then, by Lemma 14, xja,c = dj−1a for all

j = k + 1, . . . , i. By (24), we have that

i∑
j=1

zja,c =
i∑

j=1

max{xja,c − dja, 0} =
i∑

j=k

(xja,c − dja) = xka,c − dia +
i∑

j=k+1

(xja,c − dj−1a) = xka,c − dia.

Then, (23) is satisfied as, by Lemma 2, xka,c ≤ 1 and dia ≥ 1/|C|.
As a and c were chosen arbitrarily, (23) holds for every agent and every category; therefore,

we have that
∑i

j=1 |zj| ≤ |A||C|(1 − 1/|C|) = |A|(|C| − 1). The first part of the proof has

established that |zi+1| ≤ |zi| and that result holds in every round; hence |zi| ≤ |zj| for all

j ≤ i. It can then be concluded that i|zi| ≤
∑i

j=1 |zj| ≤ |A|(|C| − 1), which implies that

|zi| ≤ |A|(|C| − 1)/i.

Proof of Theorem 2

By Lemma 10, ξi complies with eligibility requirements and respects priorities and xi satisfies

all four properties in every Round i, and by Corollary 1, ξSR = limi→∞ ξ
i = limi→∞ x

i. I use

those two results to show that ξSR satisfies all four properties.

(ξSR complies with eligibility requirements) For every agent a. every category c for which a

is not eligible, and every Round i, as xi complies with eligibility requirements we have that

xia,c = 0 for all i ≥ 1. It follows that ξSRa,c = limi→∞ x
i
a,c = 0.

(ξSR is non-wasteful) Consider any category c such that
∑

a∈A ξ
SR
a,c < qc and any agent a

who is eligible for c. It needs to be shown that ξSRa ≥ 1. As
∑

a∈A ξ
SR
a,c < qc, it must be that

limi→∞
∑

a∈A x
i
a,c < qc; hence there exists a Round j such that, for all i ≥ j,

∑
a∈A x

i
a,c < qc.

As xi is non-wasteful and a is eligible for c,we have that xia ≥ 1. Then, xSRa = limi→∞ x
i
a ≥ 1.

(ξSR respects priorities) Arbitrarily fix an agent a such that ξSRa < 1, a category c, and a

39

lower-priority agent a′ ∈ Ǎa,c. It needs to be shown that ξSRa′,c = 0. By Lemma 4, for every

Round i, ξia ≤ ξSRa < 1. As ξi respects priorities, it follows that ξia′,c = 0 for all i ≥ 1; hence

we have that ξSRa′,c = limi→∞ ξ
i
a′,c = 0.

(ξSR respects equal sharing) Consider an agent a and a category c such that a is eligible

for c and ξSRa,c < maxc′∈C{ξSRa,c′}. It needs to be shown that ξSRa,c +
∑

a′∈Âa,c
ξSRa′,c = qc. By

assumption, we have that limi→∞ x
i
a,c < limi→∞maxc′∈C{xia,c′}. Then, there exists a Round j

such that, for all i ≥ j, xia,c < maxc′∈C{xia,c′}. For every i ≥ j, xi is non-wasteful; hence

xia,c +
∑

a′∈Âa,c
xia′,c = qc for all i ≥ j. We can then conclude that ξSRa,c +

∑
a′∈Âa,c

ξSRa′,c =

limi→∞(xia,c +
∑

a′∈Âa,c
xia′,c) = qc.

Proof of Theorem 3

Let ξ∗ be an allocation that satisfies Axioms 1-4; it needs to be shown that ξ∗a = ξSRa for

every agent a. Towards a contradiction, suppose to the contrary that ξ∗ã 6= ξSRã for some

agent ã. Lemma 15 implies that ξ∗a ≥ ξia for every agent a and every Round i; therefore, for

every agent a, we have that ξ∗a ≥ limi→∞ ξ
i
a = ξSRa . It follows that ξ∗ã > ξSRã and, for every

agent a 6= ã, ξ∗a ≥ ξSRa ; hence we have that |ξ∗| > |ξSR|. Consequently, there must exist a

category c such that ∑
a∈A

ξ∗a,c >
∑
a∈A

ξSRa,c . (25)

By definition (as ξ∗ is an allocation),
∑

a∈A ξ
∗
a,c ≤ qc; hence (25) implies that

∑
a∈A ξ

SR
a,c <

qc. By Corollary 1, limi→∞
∑

a∈A x
i
a,c < qc; therefore, there exists a Round j such that∑

a∈A x
i
a,c < qc for every i ≥ j. Then, by Lemma 9, for every agent a who is eligible for c, we

have that xia,c = di−1a . By definition, ξia,c = min{dia, xia,c} = min{dia, di−1a } so, by Lemma 4,

ξia,c = dia. As ξ∗a,c ≤ dia by Lemma 15, we have that ξ∗a,c ≤ ξia,c. Moreover, for any agent a

who is not eligible for c, ξia,c = 0 by definition and ξ∗a,c = 0 as ξ∗ complies with eligibility

requirements. Therefore, we can conclude that ξ∗a,c ≤ ξia,c for every Round i ≥ j and every

agent a. Then, for every agent a, ξ∗a,c ≤ limi→∞ ξ
i
a,c = ξSRa,c , which contradicts (25).

Proof of Proposition 3

Let there be three agents a1, a2, and a3 as well as two categories c1 and c2. For each of

the four axioms, I construct quotas and priorities such that an allocation that is not SR

equivalent satisfies the other three axioms.

(Complies with eligibility requirements) Let the quotas and priorities be

qc1 = 2 qc2 = 1 πc1 : a1, ∅, a3, a2 πc2 : a2, ∅, a3, a1.

40

The SR algorithm finds the SR allocation after just one round: each category allocates one

unit of capacity to its highest-priority agent, respectively a1 and a2. Hence, we have that

ξSR =

c1 c2

a1 1 0

a2 0 1

a3 0 0

 and ρSR =
(a1 a2 a3

1 1 0
)
.

Consider the alternative allocation

ξ =

c1 c2

a1 1 0

a2 0 1

a3 1 0

 with ρ(ξ) =
(a1 a2 a3

1 1 1
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ is non-wasteful since the

amount of capacity allocated by each category is equal to its quota, ξ respects priority since

every agent is allocated one unit, and ξ respects equal sharing since, for every agent-object

pair (a, c) such that a is eligible for c, we have that ξa,c = maxc′∈C{ξa,c′} (there are two such

pairs, (a1, c1) and (a2, c2), and ξa1,c1 = ξa2,c2 = 1).

(Non-wasteful) Let the quotas and priorities be

qc1 = 2 qc2 = 1 πc1 : a1, a3, ∅, a2 πc2 : a2, ∅, a3, a1.

The SR algorithm finds the SR allocation after just one round: c1 allocates its two units to its

two highest-priority agents—a1 and a3—and c2 allocates its unique unit to its highest-priority

agent—a2. Hence, we have that

ξSR =

c1 c2

a1 1 0

a2 0 1

a3 1 0

 and ρSR =
(a1 a2 a3

1 1 1
)
.

41

Consider the alternative allocation

ξ =

c1 c2

a1 1 0

a2 0 1

a3 0 0

 with ρ(ξ) =
(a1 a2 a3

1 1 0
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ complies with eligibility

requirements since agents only receive capacity from categories for which they are eligible, ξ

respects priorities as a3 is the only agent who is not allocated one unit in aggregate and every

agent with a lower priority than a3 at either category is allocated 0 from that category, and

a3 respects equal sharing as a1 is not eligible for c2, a2 is not eligible for c1, and ξa3,c1 = ξa3,c2 .

(Respects priorities) Let the quotas and priorities be

qc1 = 1 qc2 = 1 πc1 : a1, a3, a2, ∅ πc2 : a1, a2, a3, ∅.

The SR algorithm finds the SR allocation after two rounds. In Round 1, both categories

allocate one unit to a1, which has the highest-priority for both categories. Therefore, a1’s

demand decreases to 1/2 and in Round 2 each category allocates half a unit to its second

highest-priority agent, respectively a3 and a2. Hence, we have that

ξSR =

c1 c2

a1 1/2 1/2

a2 0 1/2

a3 1/2 0

 and ρSR =
(a1 a2 a3

1 1/2 1/2
)
.

Consider the alternative allocation

ξ =

c1 c2

a1 0 0

a2 1/2 1/2

a3 1/2 1/2

 with ρ(ξ) =
(a1 a2 a3

0 1 1
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ complies with eligibility

requirements as agents only receive capacity from categories for which they are eligible, ξ is

non-wasteful as each category allocates overall an amount of capacity equal to its quota, and

ξ respects equal sharing as each agent is allocated the same amount of capacity from both

categories.

42

(Respects equal sharing) Let the quotas and priorities be identical to the previous exam-

ple: qc1 = qc2 = 1, πc1 : a1, a3, a2, ∅ and πc2 : a1, a2, a3, ∅. We have again that

ξSR =

c1 c2

a1 1/2 1/2

a2 0 1/2

a3 1/2 0

 and ρSR =
(a1 a2 a3

1 1/2 1/2
)
.

Consider the alternative allocation

ξ =

c1 c2

a1 1 0

a2 0 0

a3 0 1

 with ρ(ξ) =
(a1 a2 a3

1 0 1
)
.

The allocation ξ is not SR equivalent since ρ(ξ) 6= ρSR. However, ξ complies with eligibility

requirements as agents only receive capacity from categories for which they are eligible, ξ is

non-wasteful as each category allocates overall an amount of capacity equal to its quota, and

ξ respects priorities as a2 is the only agent not to be allocated one unit in aggregate and has

a lower priority than a1 for c1 and a lower priority than a2 for c2.

Proof of Theorem 4

It needs to be shown that da(ξ
∗) ≤ da(ξ

SR) for every agent a and da(ξ
∗) < da(ξ

SR) for some

agent a. I prove each of the two statements separately.

(da(ξ
∗) ≤ da(ξ

SR) for every agent a) Consider any agent a. If ξSRa < 1, then by definition

da(ξ
∗) ≤ 1 = da(ξ

SR). If ξSRa = 1, then ξ∗a = 1 by Theorem 3. Therefore, by definition we

have that da(ξ
∗) = maxc∈C{ξ∗a,c} and da(ξ

SR) = maxc∈C{ξSRa,c }. By Lemma 16, it follows that

da(ξ
∗) = maxc∈C{ξ∗a,c} ≤ maxc∈C{ξSRa,c } = da(ξ

SR).

(da(ξ
∗) < da(ξ

SR) for some agent a) As ξ∗ 6= ξSR, there exists an agent a and a category c

such that ξ∗a,c 6= ξSRa,c . By Theorem 3, ξ∗a = ξSRa so ξ∗a,c > ξSRa,c implies that ξ∗a,c̃ < ξSRa,c̃ for some

category c̃. Therefore, without loss of generality, I assume that

ξ∗a,c < ξSRa,c (26)

and show that da(ξ
∗) ≤ da(ξ

SR).

First, observe that (26) implies that a is eligible for c; otherwise, as ξ∗ and ξSR comply

with eligibility requirements, we would have that ξ∗a,c = ξSRa,c = 0. Second, I show the following

43

intermediate result:

Claim 1.
∑

a′∈Âa,c
ξ∗a,c ≤

∑
a′∈Âa,c

ξSRa,c .

Proof. Suppose to the contrary that
∑

a′∈Âa,c
ξ∗a,c >

∑
a′∈Âa,c

ξSRa,c . Then, there exists an agent

ã ∈ Âa,c such that ξ∗ã,c > ξSRã,c . As ξSR is an allocation, by definition
∑

a′∈A ξ
SR
a′,c ≤ qc and,

by (26), ξSRa,c > 0; therefore, as ãπca, it can be concluded that ξSRã,c +
∑

a′∈Âã,c
ξSRa′,c < qc. As

ξSR respects equal sharing and ã is eligible for c (since a is eligible for c and ã has a higher

priority), it follows that ξSRã,c = maxc′∈C{ξSRã,c′}. Then, the fact that ξ∗ã,c > ξSRã,c implies that

max
c′∈C
{ξ∗ã,c′} ≥ ξ∗ã,c > ξSRã,c = max

c′∈C
{ξSRã,c′},

which contradicts Lemma 16.

Having established Claim 1, I now use it to show that da(ξ
∗) ≤ da(ξ

SR). I consider

separately the cases in which ξSRa < 1 and ξSRa = 1.

Case 1 : ξSRa < 1. In that case, by Theorem 3, ξ∗a = ξSRa < 1. As ξ∗ and ξSR are non-

wasteful, ξ∗a = ξSRa < 1, and a is eligible for c, we have that
∑

a∈A ξ
∗
a,c =

∑
a∈A ξ

SR
a,c = qc.

Moreover, as ξ∗ and ξSR respect priorities and ξ∗a = ξSRa < 1, we have that ξ∗a′,c = ξSRa′,c = 0

for every lower-priority agent a′ ∈ Ǎa,c. It follows that

ξ∗a,c +
∑

a′∈Âa,c

ξ∗a,c = ξSRa,c +
∑

a′∈Âa,c

ξSRa,c = qc.

Then, (26) implies that
∑

a′∈Âa,c
ξ∗a,c >

∑
a′∈Âa,c

ξSRa,c , which contradicts Claim 1. Therefore,

we must be in Case 2.

Case 2 : ξSRa = 1. In that case, by Theorem 3, ξ∗a = ξSRa = 1. I consider separately two

subcases: ξ∗a,c < maxc′∈C{ξ∗a,c′} and ξ∗a,c = maxc′∈C{ξ∗a,c′}.
Subcase 2.1 : ξ∗a,c < maxc′∈C{ξ∗a,c′}. As ξ∗ respects equal sharing and a is eligible for c,

we have that ξ∗a,c +
∑

a′∈Âa,c
ξ∗a′,c = qc. Moreover, as ξSR is an allocation, we have that ξSRa,c +∑

a′∈Âa,c
ξSRa′,c ≤ qc. Then, (26) implies that

∑
a′∈Âa,c

ξ∗a,c >
∑

a′∈Âa,c
ξSRa,c , which contradicts

Claim 1. Therefore, we must be in Subcase 2.2.

Subcase 2.2 : ξ∗a,c = maxc′∈C{ξ∗a,c′}. As ξ∗a = ξSRa = 1, by definition we have that da(ξ
∗) =

maxc′∈C{da(ξ∗)} and da(ξ
SR) = maxc′∈C{da(ξSR)}. Using those two results in conjunction

with the subcase assumption and (26) yields

da(ξ
∗) = max

c′∈C
{ξ∗a,c′} = ξ∗a,c < ξSRa,c ≤ max

c′∈C
{ξSRa,c′} = da(ξ

SR);

hence, it can be concluded that da(ξ
∗) ≤ da(ξ

SR), as required.

44

A.3 Properties of the SRLP algorithm

Lemma 17. For every Round i ≥ 1, ξi is an allocation and, for every agent a, ξia =

min{xia, 1}.

Proof. Lemma 17 is a counterpart to Lemma 3 for the SRLP algorithm and its proof is

completely analogous to that of Lemma 3.

Lemma 18. For every Round i of the SRLP algorithm and every agent a, we have that

dia =

{
1 if ξia < 1

maxc∈C{ξia,c} if ξia = 1.

and ξia = 1 if and only if there exists a category c such that ξia,c = dia.

Proof. Lemma 18 is a counterpart to Lemmas 5 and 6 for the SRLP algorithm and its proof

is completely analogous to those of Lemmas 5 and 6.

Lemma 19. For every Round i of the SRLP algorithm and every agent a, ξia ≥ ξi−1a and

dia ≤ δia ≤ di−1a .

Proof. Lemma 19 is a counterpart to Lemma 4 for the SRLP algorithm. By an analogous

reasoning to that of Lemma 4, the statement holds for Round 1: ξ1a ≥ ξ0a and d1a ≤ d0a.

The remainder of the proof is by induction. For some i ≥ 2, suppose that ξi−1a ≥ ξi−2a and

di−1a ≤ di−2a for all a ∈ A (induction hypothesis). I show that ξia ≥ ξi−1a and dia ≤ di−1a . The

part that differs form the proof of Lemma 4 is that one needs to show that δia ≤ di−1a . The

result is obtained directly if the SRLP algorithm does not use linear programming in Round i

since, in that case, δia = di−1a . If the SRLP does use linear programming, then δia = di−1a for

every a /∈ Ã so I focus on the case in which a ∈ Ã. As shown in the proof of Lemma 24,

the vector (ξi−1a(c),c)c∈C̃ satisfies the constraints of the linear program (LP 1); therefore, the

vector (ξi−1a,c)c∈CM (a) satisfies the constraints of the linear program (LP 3). Let (ξ∗a(c),c)c∈C̃ be

the solution to the linear program (LP 1); then, the vector (ξ∗a,c)c∈CM (a) is the solution to the

linear program (LP 3). It follows that
∑

c∈CM (a) ξ
i−1
a ≤

∑
c∈CM (a) ξ

∗
a. By construction,

|CQ(a)|di−1a +
∑

c∈CM (a)

ξi−1a,c = |CQ(a)|δia +
∑

c∈CM (a)

ξ∗a,c = 1;

hence it can be concluded that δia ≤ di−1a . As the SRLP algorithm constructs ξi from δi as

well as di and ξi from xi identically to the SR algorithm, analogous reasoning to that in the

proof of Lemma 4 implies that ξia ≥ ξi−1a and dia ≤ δia.

45

Lemma 20. For every Round i of the SRLP algorithm, every agent a, and every category c,

either xia,c < δia or ξia,c < dia implies that xia′,c = ξia′,c = 0 for every lower-priority agent

a′ ∈ Ǎa,c.

Proof. Lemma 20 is a counterpart to Lemma 7 for the SRLP algorithm. The proof is com-

pletely analogous to that of Lemma 9, the only difference is that di−1a needs to be replaced

throughout by δia.

Lemma 21. For every agent a and category c such that a is eligible for c, and for every

Round i, xia,c < δia implies that xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Proof. Lemma 21 is a counterpart to Lemma 9 for the SRLP algorithm. The proof is com-

pletely analogous to that of Lemma 9, the only difference is that di−1a needs to be replaced

throughout by δia.

Lemma 22. Suppose that, for some agent a, some category c, and some Round i ≥ 1 of the

SRLP algorithm, xia,c < dia. Then, for every j ≤ i, xja,c ≤ xia,c < dja.

Proof. Lemma 22 is a counterpart to Lemma 13 for the SRLP algorithm. The proof is

completely analogous to that of Lemma 13, the only difference is that Lemma 19 needs to

be used instead of Lemma 4.

Lemma 23. Suppose that, for some agent a, some category c and some Round i ≥ 1 of the

SRLP algorithm, xia,c ≥ dia. Then, for every j > i, xja,c = dj−1a ≥ dja.

Proof. Lemma 23 is a counterpart to Lemma 14 for the SRLP algorithm. The proof is

completely analogous to that of Lemma 14, the only difference is that Lemma 19 needs to

be used instead of Lemma 4.

A.4 Proof of Theorem 5

I present an argument to establish Theorem 5 that relies on four lemmas, whose proof can

be found immediately after this proof. The first lemma establishes that the output of Algo-

rithm 3 is well-defined.

Lemma 24. The linear program (LP 1) in Algorithm 3 has a unique solution.

Lemma 24 ensures that each Round i ≥ 1 of the SRLP algorithm, δi, xi, and di are

well-defined. The next step is to show that, unlike the SR algorithm, the SRLP algorithm

eventually terminates.

Lemma 25. The SRLP algorithm ends after fewer than 4|A||C| rounds.

46

Lemma 25 guarantees that the SRLP algorithm produces an allocation in finitely many

rounds. Letting N < 4|A||C| be the number of rounds after which the SRLP algorithm ends,

the outcome of the SRLP algorithm is then the allocation xN . (By construction, xN

must be an allocation, otherwise the SRLP algorithm would not end in Round N .) The next

result ensures that the outcome of the SRLP algorithm satisfies all four axioms.

Lemma 26. In every Round i of the SRLP algorithm, xi satisfies Axioms 1-4.

Lemmas 24-26 imply that, after N < 4|A||C| rounds, the SRLP algorithm produces an

allocation xN that satisfies Axioms 1-4. Then, by Theorem 3, the outcome of the SRLP

algorithm is SR equivalent. That is, the outcomes of the SR and SRLP algorithms yield the

same aggregate allocation. However, there may be multiple allocations satisfying Axioms 1-4

so the last step is to show that xN is indeed the SR allocation.

Lemma 27. xN = ξSR.

Combining Lemmas 25 and 27 completes the proof.

Proof of Lemma 24

I first show that (LP 1) has a solution and then proceed to showing that there cannot be

multiple solutions. For the first part of the proof, I show that the previous round allocation

ξi−1 satisfies all 2|C̃| constraints, which guarantees that the (LP 1) has a solution. That is,

I show that, for every c ∈ C̃,

ξi−1a(c),c ≤
1−

∑
c′∈CM (a(c))\{c} ξ

i−1
a(c),c′

|CQ(a(c))|+ 1
(27)

and ξi−1a(c),c ≤ q̃c −
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξ
i−1
a,c′

|CQ(a)|
. (28)

Arbitrarily fix an agent a ∈ Ã. By construction, a is qualified for at least one category in

Round i− 1 so, by Lemma 6, ξi−1a = 1. It follows that
∑

c∈CQ(a) ξ
i−1
a,c +

∑
c∈CM (a) ξ

i−1
a,c = 1. As

ξi−1a,c = da for every c ∈ CQ(a) by definition, we have that da = (1 −
∑

c∈CM (a) ξa,c)/|CQ(a)|.
Moreover, again by definition, we have that ξi−1a,c ≤ da for every c ∈ CM(a). As a was chosen

arbitrarily, it follows that

ξi−1a,c ≤
1−

∑
c∈CM (a) ξ

i−1
a,c

|CQ(a)|
for every a ∈ Ã and every c ∈ CM(a),

47

which by construction is equivalent to

ξi−1a(c),c ≤
1−

∑
c′∈CM (a(c)) ξ

i−1
a(c),c′

|CQ(a(c))|
for every c ∈ C̃.

Through simple algebra (as c ∈ CM(a(c)), ξi−1a(c),c can be moved out of the sum and to the

left-hand side), it follows that the last inequality is equivalent to (27).

To show that (28) holds, arbitrarily fix a category c ∈ C̃. As ξi−1 is an allocation (by

Lemma 3), we have that ξa(c),c +
∑

a∈AQ(c) ξ
i−1
a,c ≤ qc. By definition, ξi−1a,c = da for every

a ∈ AQ(c); hence it follows that ξa(c),c +
∑

a∈AQ(c) da ≤ qc, which by definition is equivalent

to ξa(c),c +
∑

a∈ÃQ(c) da ≤ q̃c. Moreover, for every a ∈ AQ(c), we have that |CQ(a)|da +∑
c′∈CM (a) ξ

i−1
a,c = 1 so da = (1−

∑
c′∈CM (a) ξ

i−1
a,c′)/|CQ(a)|. It follows that

ξi−1a(c),c +
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξ
i−1
a,c′

|CQ(a)|
≤ q̃c,

which is equivalent to (28).

Having established that the linear program in Algorithm 3 has a solution, I now show that

the solution is unique. I being by introducing some notation that will be useful throughout

the proof. Given a vector (ξa(c),c)c∈C̃ , for every agent a ∈ Ã let Sa =
∑

c∈CM (a) ξa,c. Arbitrarily

fix an agent a ∈ Ã and a vector S−a = (Sa′)a′∈Ã\{a}. For every c ∈ CM(a), let

θa,c = q̃c −
∑

a∈ÃQ(c)

1−
∑

c′∈CM (a) ξa,c′

|CQ(a)|
= q̃c −

∑
a∈ÃQ(c)

1− Sa′
|CQ(a)|

. (29)

Note that θa,c is the right-hand side of the second constraint of the linear program (LP 3)

and is fixed by S−a. Label the categories for which a is marginal such that CM(a) =

{c1, c2, . . . , c|CM (a)|} with θa,c1 ≥ θa,c2 ≥ . . . ≥ θa,c|CM (a)| . For every i = 1, . . . , |CM(a)|,
let

Ti =
1−

∑
j>i θa,cj

|CQ(a)|+ i
. (30)

Finally, define the number n = 0, 1, . . . , |CQ(a)| as follows. If Ti > θa,ci for every i =

1, . . . , |CM(a)|, then n = 0. Otherwise, n is the largest number i = 1, . . . , |CM(a)| such that

Ti ≤ θa,ci ; that is, Tn ≤ θa,cn and Ti > θa,ci for all i > n. Having introduced the required

notation, I next introduce the first intermediate result.

Claim 2. For every i ≥ n, Ti > Ti+1.

48

Proof. It needs to be shown that

1−
∑

j>i θa,cj
|CQ(a)|+ i

>
1−

∑
j>i+1 θa,cj

|CQ(a)|+ i+ 1
,

which is equivalent to

|CQ(a)|+ i+ 1− (|CQ(a)|+ i+ 1)
∑
j>i

θa,cj > |CQ(a)|+ i− (|CQ(a)|+ i)
∑
j>i+1

θa,cj

⇔ 1 + (|CQ(a)|+ i)
∑
j>i+1

θa,cj > (|CQ(a)|+ i+ 1)
∑
j>i

θa,cj

⇔ 1 > (|CQ(a)|+ i+ 1)θa,ci+1
+
∑
j>i+1

θa,cj

⇔ θa,ci+1
<

1−
∑

j>i+1 θa,cj
(|CQ(a)|+ i+ 1)

.

The right-hand side of the last inequality is equal to Ti+1; therefore, Ti > Ti+1 is equivalent

to θa,ci+1
< Ti+1, which is satisfied by the definition of n since, by assumption, i+ 1 > n.

Next, arbitrarily fix a vector (yi)i>n such that yi ≤ θa,ci for every i > n and consider the

following linear program:

max
(ξa,ci)

|CM (a)|
i=1

|CM (a)|∑
i=1

ξa,ci

subject to (i) ξa,ci ≤
1−

∑
j 6=i ξa,cj

|CQ(a)|+ 1
for every i = 1, . . . , |CM(a)|

and (ii) ξa,ci = yi for every i > n.

(LP 2)

The linear program (LP 2) can be interpreted as follows. For every i > n, ξa,ci is set to yi so

only the first n elements (ξa,ci for i ≤ n) have to be chosen in order to maximized the sum,

subject to constraint (i).

Claim 3. For any vector (yi)i>n ≤ (θa,ci)i>n, the unique solution to the linear program (LP 2)

is the vector (ξ∗a,ci)
|CM (a)|
i=1 such that

ξ∗a,ci =

{
1−

∑
j>n yj

|CQ(a)|+n if i ≤ n

yi if i > n.

Proof. I first show that (ξ∗a,ci)
|CM (a)|
i=1 satisfies all constraints. Constraint (ii) is satisfied for all

i > n by definition; hence I focus on constraint (i).

49

Case 1 : i ≤ n. It needs to be shown that

1−
∑

j>n yj

|CQ(a)|+ n
≤

1−
∑

j 6=i ξ
∗
a,cj

|CQ(a)|+ 1
. (31)

By definition, we have that

1−
∑
j 6=i

ξ∗a,cj = 1− (n− 1)
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj =
(|CQ(a)|+ 1)(1−

∑
j>n yj)

|CQ(a)|+ n
.

Therefore, the right-hand side of (31) is equal to (1−
∑

j>n yj)/(|CQ(a)|+ n) and (31) holds

with an equality.

Case 2 : i > n. It needs to be shown that

ξ∗a,ci ≤
1−

∑
j 6=i ξ

∗
a,cj

|CQ(a)|+ 1
,

which is equivalent to

|CQ(a)|ξ∗a,ci ≤ 1−
|CM (a)|∑
j=1

ξ∗a,cj . (32)

By the definition of (ξa,ci)
|CM (a)|
i=1 , (32) is equivalent to

|CQ(a)|yi ≤ 1− n
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj

yi ≤
1−

∑
j>n yj

|CQ(a)|+ n
(33)

As yi ≤ θa,ci by definition, θa,ci < Ti by the definition of n, Ti < Tn by Claim 2, and Tn is

equal to the right-hand side of (32), it can be concluded that (32) holds.

Having shown that the vector (ξ∗a,ci)
|CM (a)|
i=1 satisfies all constraints, I proceed to show

that it maximizes the objective, which makes it a solution to (LP 2). Consider any vector

(ξa,ci)
|CM (a)|
i=1 that satisfies constraints (i) and (ii); I show that

∑CM (A)
i=1 ξa,ci ≤

∑CM (A)
i=1 ξ∗a,ci .

Constraint (i) implies that, for every i ≤ n,

|CQ(a)|ξa,ci ≤ 1−
|CM (a)|∑
j=1

ξa,cj .

50

Summing up over all i ≤ n yields

∑
i≤n

|CQ(a)|ξa,ci ≤
∑
i≤n

(1−
|CM (a)|∑
j=1

ξa,cj)

⇔ |CQ(a)|
∑
i≤n

ξa,ci ≤ n− n
|CM (a)|∑
i=1

ξa,ci

⇔ (|CQ(a)|+ n)
∑
i≤n

ξa,ci ≤ n− n
∑
i>n

ξa,ci

⇔
∑
i≤n

ξa,ci ≤ n
1−

∑
i>n ξa,ci

|CQ(a)|+ n

⇔
|CM (a)|∑
i=1

ξa,ci ≤ n
1−

∑
i>n ξa,ci

|CQ(a)|+ n
+
∑
i>n

ξa,ci .

As constraint (ii) holds for every i > n, we obtain that

|CM (a)|∑
i=1

ξa,ci ≤ n
1−

∑
i>n yi

|CQ(a)|+ n
+
∑
i>n

yi. (34)

By definition, we have that

|CM (a)|∑
i=1

ξ∗a,ci = n
1−

∑
j>n yj

|CQ(a)|+ n
+
∑
j>n

yj,

which combined with (34) implies that
∑CM (A)

i=1 ξa,ci ≤
∑CM (A)

i=1 ξ∗a,ci .

Having shown that is a solution to the linear program (LP 2), I finally show that it is

the unique solution. Let (ξ]a,ci)
|CM (a)
i=1 be a solution to (LP 2), it needs to be shown that

(ξ]a,ci)
|CM (a)
i=1 = (ξ∗a,ci)

|CM (a)
i=1 . As (ξ]a,ci)

|CM (a)
i=1 is a solution to (LP 2), it maximizes the objective

so
|CM (a)|∑
i=1

ξ]a,ci =

|CM (a)|∑
i=1

ξ∗a,ci = n
1−

∑
j>n yj

|CQ(a)|+ n
+
∑
j>n

yj.

Moreover, as (ξ]a,ci)
|CM (a)
i=1 satisfies constraint (i), for every i ≤ n, we have that

|CQ(a)|ξ]a,ci ≤ 1−
|CM (a)|∑
j=1

ξ]a,cj .

51

Therefore, it follows that, for every i ≤ n

|CQ(a)|ξ]a,ci ≤ 1− n
1−

∑
j>n yj

|CQ(a)|+ n
−
∑
j>n

yj

ξ]a,ci ≤
1−

∑
j>n yj

|CQ(a)|+ n
.

Then, by definition, it follows that ξ]a,ci ≤ ξ∗a,ci for every i ≤ n. As ξ]a,ci = ξ∗a,ci for all i > n (by

constraint (ii)) and
∑|CM (a)|

i=1 ξ]a,ci =
∑|CM (a)|

i=1 ξ∗a,ci (as both vectors maximize the objective),

we have that (ξ]a,ci)
|CM (a)
i=1 = (ξ∗a,ci)

|CM (a)
i=1 .

I next use Claim 3 to find the solution to the following linear program.

max
(ξa,ci)

|CM (a)|
i=1

|CM (a)|∑
i=1

ξa,ci

subject to (i) ξa,ci ≤
1−

∑
j 6=i ξa,cj

|CQ(a)|+ 1

and (ii) ξa,ci ≤ θa,ci for every i = 1, . . . , |CM(a)|.

(LP 3)

The linear program (LP 3) can be thought of as the linear program (LP 1) from Algorithm 3

in which S−a has been fixed so only the vector (ξa,ci)
|CM (a)|
i=1 , that is the elements that involve

agent a, remains to be optimized in order to maximize Sa.

Claim 4. The unique solution to the linear program (LP 3) is the vector (ξ∗a,ci)
|CM (a)
i=1 such

that, for every i = 1, . . . , CM(a),

ξ∗a,ci =

{
Tn if i ≤ n

θa,ci if i > n.

Proof. By Claim 3, (ξ∗a,ci)
|CM (a)
i=1 satisfies constraint (i); otherwise the unique solution to (LP 2)

would not satisfy that linear program’s constraints. By definition, for every i ≤ n, ξ∗a,ci =

Tn ≤ θa,ci and, for every i > n, ξ∗a,ci = θa,ci ; hence (ξ∗a,ci)
|CM (a)
i=1 satisfies constraint (ii).

Having shown that (ξ∗a,ci)
|CM (a)
i=1 satisfies all constraints (which implies that (LP 3) has a

solution), I now show that it is the unique solution to (LP 3). Let (ξ]a,ci)
|CM (a)
i=1 be a solution

to (LP 3), I show that (ξ]a,ci)
|CM (a)
i=1 = (ξ∗a,ci)

|CM (a)
i=1 . By constraint (ii), ξ]a,ciθa,ci for every i > n;

therefore Claim 3 implies that, for every i ≤ n,

ξ]a,ci =
1−

∑
j>n ξ

]
a,cj

|CQ(a)|+ n
, (35)

52

as otherwise (ξ]a,ci)
|CM (a)
i=1 would not be optimal. Then,

|CM (a)|∑
i=1

ξ]a,ci = n
1−

∑
i>n ξ

]
a,ci

|CQ(a)|+ n
+
∑
i>n

ξ]a,cj =
n+ |CQ(a)|

∑
i>n ξ

]
a,ci

|CQ(a)|+ n

so the objective is increasing in (ξ]a,ci)i>n; therefore, the unique maximizer is obtained by

setting ξ]a,ci = θa,ci for every i > n, which by (35) implies that ξ]a,ci = Tn for every i ≤ n. It

follows that (ξ]a,ci)
|CM (a)|
i=1 = (ξ∗a,ci)

|CM (a)|
i=1 .

I finally go back to the linear program (LP 1) in Algorithm 3 and use Claim 4 to show

that (LP 1) has a unique solution. For any agent a ∈ Ã and any S−a, let Sa(S−a) be the

maximized objective function of the linear program (LP 3); in words, Sa(S−a) is the largest

sum that can be reached for the elements involving agent a given S−a. If S−a increases, then

by (29), so does θa,c for every c ∈ CM(a). Therefore, constraint (ii) of the linear program

(LP 3) is relaxed, meaning that the largest sum that can be reached increases as well. It

follows that Sa(S−a) is increasing in S−a. Suppose towards a contradiction that (LP 1) has

two solutions giving two distinct sum vectors S∗ = (S∗a)a∈Ã and S] = (S]a)a∈Ã. Then, for

every a ∈ Ã, S∗a = Sa(S
∗
−a) and S]a = Sa(S

]
−a). Consider the sum vector S = (Sa)a∈Ã with

Sa = max{S∗a, S]a} for every a ∈ Ã. As S∗ and S] are distinct and derive from solutions of

(LP 1), it must be that
∑

a∈Ã Sa >
∑

a∈Ã S
∗
a =

∑
a∈Ã S

]
a; hence the allocation underpinning S

must violate some constraint of (LP 1). Consequently, there exists an agent a ∈ Ã such that

Sa > Sa(S−a). By definition, S−a ≥ S∗−a; hence, as Sa(S−a) is increasing in S−a, it follows

that Sa(S−a) ≥ Sa(S
∗
−a). As S∗a = Sa(S

∗
a), it can be concluded that Sa > S∗a. Analogous

reasoning yields that Sa > S]a so Sa > max{S∗a, S]a}, a contradiction.

The preceding reasoning implies that every solution to (LP 1) yields the same sum vector,

which I denote by S∗. By Claim 4, for every a ∈ Ã, there exists a unique vector (ξ∗a,c)c∈CM (a)

such that
∑

c∈CM (a) ξ
∗
a,c = S∗a = Sa(S

∗
−a). Therefore, the vector (ξ∗a,c)a∈Ã,c∈CM (a) = (ξ∗a(c),c)c∈C̃

is the unique solution to (LP 1).

Proof of Lemma 25

Consider any Round i, any agent a and any category c. Suppose that a is qualified for c in

Round i, that is xia,c ≥ dia. By Lemma 23, for every j > i, xja,c ≥ dja; therefore, a remains

qualified for c in every subsequent round. Suppose next that a is marginal for c in Round i,

that is 0 < xia,c < dia. By Lemma 22, in any Round j > i, either xja,c ≥ xia,c or xja,c = dja.

In both cases, xja,c > 0; therefore, a is either marginal or qualified for c in every subsequent

round. It follows that throughout the SRLP algorithm, for every agent-object pair (a, c), a’s

53

status for c changes at most twice: once from unqualified to marginal and once from marginal

to qualified.

Consider next a Round i in which the SRLP algorithm uses linear programming, i.e.,

δi = δLP (xi−1, di−1). I show that either the algorithm ends in Round i or there exists an

agent-object pair (a, c) such that a’s status for c changes in Round i. If xia ≤ 1 for every

agent a, the algorithm ends in Round i so the remainder of the argument focuses on the case

in which xia > 1 for some agent a. Suppose first that a was not qualified for any category in

Round i−1. The assumption that xia > 1 implies by definition that ξia = 1 and by Lemma 18

that ξia,c = dia for some category c. It follows that a’s status for c has changed from either

unqualified or marginal to qualified in Round i. Suppose next that a was qualified for some

categories but not qualified for any. Then, by assumption, ξi−1a,c = di−1a for all c ∈ CQ(a)

and ξi−1a,c = 0 for all c ∈ C \ CQ(a). By Lemma 18, ξi−1a = 1 so |Ci−1
Q (a)|di−1a = 1. As a is

not marginal for any category, a /∈ Ã in the LP algorithm; hence δi = di−1. It follows that

|Ci−1
Q (a)|δia = 1; moreover, by definition xia,c ≤ δia for every category c so

∑
c∈Ci−1

Q (a) x
i
a,c ≤ 1.

Then, the assumption that xia > 1 implies that there is a category c such that xia,c > xi−1a,c = 0

so a’s status for c has changed in Round i from unqualified to either marginal or qualified.

Last, consider the remaining case in which a is qualified for at least one category and marginal

for at least one category. In that case, a ∈ Ã in the LP algorithm so δi = δLP (xi−1, di−1). Let

(ξa(c),c)c∈C̃ be the solution to the linear program (LP 1) in the LP algorithm. By construction,

for every c ∈ CM(a), ξ∗a,c = min{δia, q̃c −
∑

a′∈ÃQ(c) δ
i
a′}; otherwise, one constraint in (LP 1)

would hold with a strict inequality and (ξa(c),c)c∈C̃ would not be the solution to (LP 1).

If ξ∗a,c = δia, then xia,c ≤ ξ∗a,c since xia,c ≤ δia by definition. If ξ∗a,c = q̃c −
∑

a′∈ÃQ(c) δ
i
a′ ,

then, as q̃c = qc −
∑

a′∈AQ(c)\ÃQ(c) d
i−1
a′ and δia′ = di−1a′ for every a′ ∈ AQ(c) \ ÃQ(c), we

have that ξ∗a,c = qc −
∑

a′∈AQ(c) δ
i
a′ . Moreover, as a is marginal for c, AQ(c) = Âa,c so

ξ∗a,c = qc−
∑

a′∈Âa,c
δia′ . Then, for every agent a′ ∈ Âa,c, δia′ +

∑
ã∈Âa′,c

δã < qc so by definition

xia′,c = δia′ for every a′ ∈ Âa,c. It follows that ξ∗a,c = qc −
∑

a′∈Âa,c
ξia′,c or, equivalently,

ξ∗a,c +
∑

a′∈Âa,c
ξia′,c = qc. As xa,c is a pre-allocation, x∗a,c +

∑
a′∈Âa,c

ξia′,c ≤ qc so it can be

concluded that ξ∗a,c ≤ ξ∗a,c. By construction, |CQ(a)|δia +
∑

c∈CM (a) ξ
∗
a,c = 1; therefore the

fact that xia,c ≤ ξ∗a,c for every c ∈ CM(a) implies that
∑

c∈CQ(a)∪CM (a) x
i
a,c ≤ 1. Then, the

assumption that xia > 1 implies that xia,c > 0 for some c ∈ CU(a) so a’s status for c changes

in Round i from unqualified to either marginal or qualified.

Having established that the status of each agent for each category changes at most twice

throughout the SRLP algorithm and that in every round in which the SRLP algorithm uses

linear programming the status of at least one agent for at least one category change, I am

now in a position to prove that the SRLP algorithm ends after fewer than 4|A||C| rounds.

In fact, I will show that 4|A||C|−2 is an upper bound for the number of rounds of the SRLP

54

algorithm. First, suppose that fewer than two status changes occur in Round 1. In that case,

no agent is qualified for any category in Round 1, that is x1a,c < d1a for every agent-category

pair (a, c). Then, by Lemma 18, ξ1a < 1 and d1a = 1 for every agent a. By definition, it

follows that x1a < 1 for every agent a so the SRLP algorithm ends in Round 1. Therefore,

if the SRLP algorithm lasts more than one round, then at least two changes of status occur

in Round 1. Suppose that, in some subsequent Round i > 1, no change of status occurs.

Then, by construction, the SRLP algorithm uses linear programming in Round i+ 1, which

guarantees that a change of status occurs in Round i+ 1. It follows that at least one change

of status occurs every second round. Then, by the end of Round 4|A||C|−3, 4|A||C| changes

of status must have occurred: 2 in Round 1 and 2|A||C| − 2 in the 4|A||C| − 4 subsequent

rounds. As the status of each agent for each category can change at most twice, it follows

that, at the end of Round 4|A||C| − 3, every agent is qualified for every category. Then,

ξ
4|A||C|−3
a,c = d

4|A||C|−3
a for every agent-category pair (a, c) so, by Lemma 18, ξ

4|A||C|−3
a = 1 for

every agent a. It follows that d
4|A||C|−3
a = 1/|C| for every agent a. In Round 4|A||C| − 2, by

Lemma 23, x
4|A||C|−2
a,c = d

4|A||C|−3
a = 1/|C| for every agent-object pair (a, c). Then, for every

agent a, x
4|A||C|−2
a =

∑
c∈C 1/|C| = 1 so the SRLP algorithm ends.

Proof of Lemma 26

While not entirely analogous, the reasoning is very similar to the proof of Lemma 10.

(Complies with eligibility requirements) By definition, if an agent a is not eligible for a

category c, then xia,c = 0.

(Non-wasteful) Consider any category c such that
∑

a∈A x
i
a,c < qc and any agent a who is

eligible for c. It needs to be shown that xia ≥ 1.

Case 1 : xia,c = δia. By the case assumption and Lemma 19, xia,c = δia ≥ dia; hence, by

definition, ξia,c = min{dia, xia,c} = dia. By Lemma 18, it follows that ξia = 1 so, by definition,

xia ≥ ξia = 1.

Case 2 : xia,c < δia. In that case, Lemma 21 applies and yields xia,c +
∑

a′∈Âa,c
xia′,c = qc.

Then, we have that
∑

a∈A x
i
a,c ≥ xia,c +

∑
a′∈Âa,c

xia′,c = qc, which contradicts the assumption

that
∑

a∈A x
i
a,c < qc.

(Respects priorities) Consider an agent a such that ξia < 1 and arbitrarily fix a category c

and a lower-priority agent a′ ∈ Ǎa,c. It needs to be shown that xia′,c = 0. By Lemma 18, the

assumption that ξia < 1 implies that ξia,c < dia so, by Lemma 20, ξia′,c = 0.

(Respects equal sharing) Consider any agent a and any category c such that a is eligible

for c and xia,c < maxc′∈C{xa,c′}. It needs to be shown that xia,c +
∑

a′∈Âa,c
xa′,c = qc. By

definition, maxc′∈C{xia,c′} ≤ δia; hence we have that xia,c < δia. Then, by Lemma 21, we have

that xia,c +
∑

a′∈Âa,c
xia′,c = qc.

55

Proof of Lemma 27

Consider the allocation ξSR produced by the SR algorithm and the associated demand vector

d(ξSR). By definition, for every agent a, da(ξ
SR) = 1 if ξSRa < 1 and da(ξ

SR) = maxc∈C{ξa,c}
if ξSRa = 1. For every category c, it is possible to identify the agents who are qualified,

marginal, and unqualified for c under the allocation ξSR. For every category c, I denote by

ASRQ (c) = {a ∈ A : ξSRa,c = da(ξ
SR)} the set of agents who are qualified for c under ξSR,

by ASRM (c) = {a ∈ A : ξSRa,c ∈ (0, da(ξ
SR))} the set of agents who are marginal for c under

ξSR, and by ASRU (c) = {a ∈ A : ξSRa,c = 0} the set of agents who are unqualified for a under

ξSR. Similarly, for every agent a, I denote by CSR
Q (a) = {c ∈ C : ξSRa,c = da(ξ

SR)} the set

of categories for which a is qualified, by CSR
M (a) = {c ∈ C : ξSRa,c ∈ (0, da(ξ

SR))} the set of

categories for which a is marginal, and by CSR
U (a) = {c ∈ C : ξSRa,c = 0} the set of categories for

which a is unqualified. The next result formalizes the properties of the preceding definitions.

Claim 5. For every category c, |AM(c)| ≤ 1 and, for any two agents a and a′, either a ∈
AQ(c) and a′ ∈ AM(c) ∪ AU(c) or a ∈ AM(c) and a′ ∈ AU(c) implies that aπca

′.

Proof. (|AM(c)| ≤ 1.) Towards a contradiction, suppose that there exist two distinct agents

a, a′ ∈ AM(c) with a 6= a′. By assumption, we have that 0 < ξSRa,c < da(ξ
SR) and 0 <

ξSRa′,c < da′(ξ
SR); as ξSR complies with eligibility requirements, it follows that both a and a′

are eligible for c. If ξSRa < 1, then, as ξSR respects priorities, ξSRa′,c = 0, a contradiction. If

ξSRa = 1, then by definition ξSRa,c < da(ξ
SR) = maxc′∈C{ξSRa,c′}. As ξSR respects equal sharing,

it follows that ξSRa,c +
∑

ã∈Âa,c
ξã,c = qc so ξa′,c = 0, a contradiction.

(a ∈ AQ(c) and a′ ∈ AM(c) ∪ AU(c) implies that aπca
′.) By assumption, a 6= a′ and

ξSRa,c = da(ξ
SR) > 0. Towards a contradiction, suppose that aπca

′. If a′ is not eligible for c,

then neither is a since a′πa; hence, as ξSR complies with eligibility requirements, ξSRa,c = 0,

a contradiction. For the remainder of the argument, I assume that a′ is eligible for c. If

ξSRa′ < 1, then, as ξSR respects priorities, the assumption that a′πca implies that ξSRa,c = 0, a

contradiction. If ξSRa′ = 1, then by definition dSRa′ = minc′∈C{ξSRa′,c′}; as a′ ∈ AM(c) ∪ AU(c),

ξSRa′,c < dSRa′ so it follows that ξSRa′,c < minc′∈C{ξSRa′,c′}. As ξSR respects equal sharing, we have

that ξSRa′,c +
∑

ã∈Âa′,c
ξã,c = qc so ξSRa,c = 0, a contradiction.

(a ∈ AM(c) and a′ ∈ AU(c) implies that aπca
′.) The reasoning is almost analogous to

that of the preceding argument. By assumption, we have that a 6= a′ and ξSRa,c > 0. Towards

a contradiction, suppose that aπca
′. If a′ is not eligible for c, neither is a so ξSRa,c = 0.

Otherwise, if ξSRa′ < 1, we have that ξSRa,c = 0 since ξSR respects priorities and if ξSRa′ < 1,

we have that ξSRa,c = 0 since ξSR respects equal sharing. Therefore, in all cases, ξSRa,c = 0, a

contradiction.

56

Next, I construct an alternative rationing problem R = (A,C, (πc))c ∈ C, (qc)c∈C) that is

identical to the original rationing problem R except that every agent a who is unqualified for

a category c under the SR allocation is ineligible for c in R (whether or not a is eligible for c

in R). That is, for every category c, πc is constructed as follows: for any two agents a and a′,

aπca
′ if and only if aπca

′ and for every agent a, aπc∅ if and only if ξSRa,c > 0. In the original

rationing problem R, the SR algorithm produces the allocation ξSR and the SRLP algorithm

terminates after N rounds and produces the allocation xN . In the alternative rationing

problem R, I denote by xSRa,c the allocation produced by the SR algorithm, by N the number

of rounds after which the SRLP algorithm ends, and by xN the allocation produced by the

SRLP algorithm. In order to prove that ξSR = xN , I show successively that ξSR = ξ
SR

,

ξ
SR

= xN , and xN = xN .

(ξSR = ξ
SR

) For the original rationing problem R, I denote by xi, ξi, and di the pre-

allocation, the allocation, and the demand vector calculated by the SR algorithm in any

given Round i. Similarly, for the alternative rationing problem R, I denote by xi, ξ
j
, and

d
i

the pre-allocation, the allocation, and the demand vector calculated by the SR algorithm

in any given Round i. I also denote by d0 and d
0

the initial demand vectors in R and R,

respectively.

By definition, we have that d0 = d
0

= 1. Consider any Round i ≥ 1 of the SR algorithm

and suppose, towards an inductive argument, that di−1 = d
i−1

. I show that xi = xi and

di = d
i
. Arbitrarily fix an agent a and a category c. I first show that xia,c = xia,c, considering

separately the cases in which ξSRa,c > 0 and ξSRa,c = 0.

Case 1 : ξSRa,c > 0. As ξSR complies with eligibility requirements, the case assumption

implies that a is eligible for c in the rationing problem R. By definition, the case assumption

also implies that a is eligible for c in the alternative rationing problem R. Again by definition,

it follows that xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c
di−1a′ , 0}} and xia,c = min{di−1a ,max{qc −∑

a′∈Âa,c
d
i−1
a′ , 0}} so the induction hypothesis that di−1 = d

i−1
implies that xia,c = xia,c. (Note

that, by definition, the priority among agents is the same in both rationing problems so Âa,c

can be used to calculate both xia,c and xia,c.)

Case 2 : ξSRa,c = 0. By definition, the case assumption implies that a is not eligible for c

in the original rationing problem R; hence, xia,c = 0 and it remains to show that xia,c = 0.

If a is not eligible either in the alternative rationing problem R, it follows by definition that

xia,c = 0; therefore, for the remainder of the argument, I assume that a is eligible for c in R.

If ξSRa < 1, as a is eligible for c and ξSR is non-wasteful, we have that
∑

a′∈A ξ
SR
a,c = qc.

Moreover, as ξSR respects priorities, ξSRa′,c = 0 for every a′ ∈ Ǎa,c and, by the case assumption,

ξSRa,c = 0. It follows that
∑

a′∈Âa,c
ξSRa′,c = qc. If ξSRa = 1, then ξSRa,c +

∑
a′∈Âa,c

ξSRa′,c = qc as ξSR

respects equal sharing so the case assumption implies that
∑

a′∈Âa,c
ξSRa′,c = qc. Therefore, it

57

has been established that ∑
a′∈Âa,c

ξSRa′,c = qc. (36)

Consider any agent a′ ∈ Âa,c. By Lemma 5, for every Round j ≥ 1 of the SR algorithm, we

have that dja′ ≥ maxc′∈C{ξa,c′}, which implies that dja′ ≥ ξja′,c. By Lemma 4, it follows that,

for every j ≥ 1, dja′ ≥ limj→∞ ξ
j
a′,c. Therefore, by Corollary 1, we have that dja′ ≥ ξSRa′,c for

every j ≥ 1, which implies that di−1a′ ≥ ξSRa′,c. As the last inequality holds for every a′ ∈ Âa,c,
(36) implies that

∑
a′∈Âa,c

di−1a′ ≥ qc. As a is eligible for c, it can then be concluded that

xia,c = min{di−1a ,max{qc −
∑

a′∈Âa,c
di−1a′ , 0}} = 0.

As a and c were chosen arbitrarily, it has been established that xia,c = xia,c for every

agent a and every category c; hence we have that xi = xi. Then, by construction, it follows

that di = d
i
. By induction, it can then be concluded that xi = xi for every i ≥ 1. Therefore,

by Corollary 1, we have that ξSR = limi→∞ x
i = limi→∞ x

i = ξ
SR

.

(ξ
SR

= xN) As each of ξ
SR

and xN is an allocation of the alternative rationing problem

R that satisfies Axioms 1-4, it is sufficient to show that ξ
SR

is the unique allocation of R

that satisfies Axiom 1-4. Let ξ
∗

be an allocation of R that satisfies Axioms 1-4. I show that

ξ
∗

= ξ
SR

.

First, by Theorem 3, ξ
∗

and ξ
SR

generate the same aggregate allocation; moreover, by

Theorem 4, the demand vector associated with ξ
∗

is weakly smaller than the one associated

with ξSR. It follows that

da(ξ
∗
) ≤ da(ξ

SR
) and ξ

∗
a = ξ

SR

a for every a ∈ A. (37)

Consider any agent-object pair (a, c) such that a is not qualified for c under ξ
SR

, i.e., ξ
SR

a,c = 0.

As ξ
SR

= ξSR, a is not qualified for c under ξSR; hence, by definition, a is not eligible for c in

the alternative rationing problem R. As ξ
∗

complies with eligibility requirements, it follows

that ξ∗a,c = 0 so we have that

ξ
∗
a,c = 0 for every (a, c) ∈ A× C such that ξ

SR

a,c = 0. (38)

Consider next any agent-object pair (a, c) such that a is qualified for c under ξ
SR

, i.e.,

ξ
SR

a,c = da(ξ
SR

). By definition, ξ
∗
a,c ≤ da(ξ

∗
) and, by (37), da(ξ

∗
) ≤ da(ξ

SR
); therefore, we

have that

ξ
∗
a,c ≤ da(ξ

∗
) ≤ da(ξ

SR
) = ξ

SR

a,c . (39)

Consider any agent a′ ∈ Âa,c and suppose, towards a contradiction, that ξ
SR

a′,c < da′(ξ
SR). If

ξ
SR

a′ < 1, then the fact that ξ
SR

a,c = da(ξ
SR

) > 0 implies that ξ
SR

does not respect priorities, a

58

contradiction. If ξ
SR

a′ = 1, then by definition da′(ξ
SR

) = maxc′∈C{ξSRa,c′} so we have that ξ
SR

a′,c <

maxc∈C{ξ
SR

a′,c′}. As ξ
SR

respects equal sharing, it must then be that ξ
SR

a′,c +
∑

ã∈Âa′,c
ξ
SR

ã,c = qc.

However, as ξ
SR

a,c = da(ξ
SR

) > 0, we have that ξ
SR

a,c +
∑

ã∈Âa,c
ξ
SR

ã,c > qc, a contradiction. It can

then be concluded that ξ
SR

a′,c = da′(ξ
SR); hence (39) applies to a′ and we have that ξ

∗
a′,c ≤ ξ

SR

a′,c

for all a′ ∈ Âa,c. It follows that

ξ
∗
a,c +

∑
a′∈Âa,c

ξ
∗
a′,c ≤ ξ

SR

a,c +
∑

a′∈Âa,c

ξ
SR

a′,c. (40)

Suppose towards a contradiction that ξ
∗
a,c < da(ξ

∗
). By (37), we have that ξ

∗
a,c < ξ

SR

a,c so (40)

holds with a strict inequality, which implies that ξ
∗
a,c +

∑
a′∈Âa,c

ξ
∗
a′,c < qc. If ξ

∗
a < 1, then ξ

∗

either is wasteful or does not respect priorities while if ξ
∗
a = 1, then da(ξ

∗
) = maxc′∈C{ξ

∗
a,c′}

so ξ
∗
a,c < maxc′∈C{ξ

∗
a,c′} and ξ

∗
does not respect equal sharing. As ξ

∗
satisfies Axioms 1-4

by assumption, both cases yield a contradiction. It follows that ξ
∗
a,c = da(ξ

∗
). Then, if

da(ξ
∗
) = 1, ξ

∗
a,c = 1 so ξ

∗
a = 1 and if da(ξ

∗
) < 1, ξ

∗
a = 1 by definition. As a and c were chosen

arbitrarily, it can then be concluded that

ξ
∗
a,c = da(ξ

∗
) and ξ

∗
a = 1 for every (a, c) ∈ A× C such that ξ

SR

a,c = da(ξ
SR

). (41)

Let ASRQ = ∪c∈C{ASRQ (c)} be the set of agents who are qualified for at least one category under

ξ
SR

. For every agent a ∈ ASRQ , (41) implies that ξ
∗
a = 1 so

∑
a∈CSR

Q (a) ξ
∗
a,c +

∑
a∈CSR

M (a) ξ
∗
a,c +∑

a∈CSR
U (a) ξ

∗
a,c = 1. By (38) and (41), it follows that |CSR

Q (a)|da(ξ
∗
) +

∑
a∈CSR

M (a) ξ
∗
a,c = 1;

hence we have that

da(ξ
∗
) =

1−
∑

c∈CSR
M (a) ξ

∗
a,c

|CSR
Q (a)|

for every a ∈ ASRQ . (42)

Next, let CSR
M = ∪a∈ACSR

M (a) be the set of categories that have a marginal agent and,

for every c ∈ CSR
M , let a(c) be the agent who is marginal for c (by Claim 5, a(c) is unique).

Consider any category c ∈ CSR
M . By definition, ξ

SR

a,c = 0 for every a ∈ ASRU (c) so
∑

a∈A ξ
SR

a,c =

ξ
SR

a(c),c +
∑

a′∈ASR
Q (c) ξ

SR

a′,c. As Claim 5 implies that ASRQ (c) = Âa(c),c, we have that
∑

a∈A ξ
SR

a,c =

ξ
SR

a(c),c +
∑

a′∈Âa(c),c
ξ
SR

a′,c. If ξ
SR

a(c) < 1, then, as ξ
SR

is non-wasteful and respects priorities,

it must be that ξ
SR

a(c),c +
∑

a′∈Âa(c),c
ξ
SR

a′,c = qc. If ξ
SR

a(c) = 1, then by definition da(ξ
SR

) =

maxc′∈C{ξ
SR

a(c),c′} so ξ
SR

a(c),c < maxc′∈C{ξ
SR

a(c),c′}. As ξ
SR

respects equal sharing, it must then be

59

that ξ
SR

a(c),c +
∑

a′∈Âa(c),c
ξ
SR

a′,c = qc. The preceding argument has established that

∑
a∈A

ξ
SR

a,c = qc for every c ∈ CSR
M . (43)

As ξ
∗

is an allocation, it must be that
∑

a∈A ξ
∗
a,c ≤ qc, and therefore (43) implies that∑

a∈A ξ
∗
a,c ≤

∑
a∈A ξ

SR

a,c .

Consider next a category c ∈ C \ CSR
M . For every a ∈ ASRU (c), ξ

SR

a,c = 0 by definition and

ξ
∗
a,c = 0 by (38). As ASRM (c) = ∅ by assumption, it follows that

∑
a∈A ξ

SR

a,c =
∑

a∈ASR
Q (c) ξ

SR

a,c

and
∑

a∈A ξ
∗
a,c =

∑
a∈ASR

Q (c) ξ
∗
a,c. For every a ∈ ASRQ (c), ξ

SR

a,c = da(ξ
SR

) by definition and

ξ
∗
a,c = da(ξ

∗
) by (41), which implies that

∑
a∈A ξ

SR

a,c = |ASRQ (c)|da(ξ
SR

) and
∑

a∈A ξ
∗
a,c =

|ASRQ (c)|da(ξ
∗
). As da(ξ

∗
) ≤ da(ξ

SR
), it must then be that

∑
a∈A ξ

∗
a,c ≤

∑
a∈A ξ

SR

a,c . The

argument in the last two paragraphs allows concluding that∑
a∈A

ξ
∗
a,c ≤

∑
a∈A

ξ
SR

a,c for every c ∈ C. (44)

By (37), |ξ∗| =
∑

a∈A ξ
∗
a =

∑
a∈A ξ

SR

a = |ξSR|.; hence, by definition, we have that∑
c∈C
∑

a∈A ξ
∗
a,c =

∑
c∈C
∑

a∈A ξ
SR

a,c , which combined with (44) implies that∑
a∈A

ξ
∗
a,c =

∑
a∈A

ξ
SR

a,c for every c ∈ C. (45)

For every category c ∈ CSR
M , combining (43) and (45) yields

∑
a∈A ξ

∗
a,c = qc. As ξ

∗
a,c = 0 for

every a ∈ ASRU (c) by (38) and ξ
∗
a,c = da(ξ

∗
) for every a ∈ ASRQ (c) by (41), it must be that

ξ
∗
a(c),c +

∑
a′∈ASR

Q (c)

da′(ξ
∗
) = qc for every c ∈ CSR

M . (46)

Combining (42) and (46), it follows that any allocation ξ
∗

that satisfies Axioms 1-4 must

satisfy the following linear system of equations:

ξ
∗
a(c),c +

∑
a′∈ASR

Q (c)

1−
∑

c∈CSR
M (a′) ξ

∗
a′,c

|CSR
Q (a′)|

= qc for every c ∈ CSR
M . (47)

The linear system of equations defined in (47) has |CSR
M | variables and |CSR

M | equations.

For any ξ
∗

that satisfies Axioms 1-4, (ξ
∗
a(c),c)c∈CSR

M
must be a solution to the linear system of

equations defined in (47); moreover, for every agent-category pair (a, c) such that a ∈ ASRQ (c),

60

ξ
∗
a,c must be determined by (41) and (42), and for every agent-category pair (a, c) such that

a ∈ ASRU (c), it must be that ξ
∗
a,c = 0, as per (38). As ξ

SR
satisfies Axioms 1-4, (ξ

SR

a(c),c)c∈CSR
M

is

a solution to the linear system of equations defined in (47). If all |CSR
M | equations in (47) are

linearly independent, then (ξ
SR

a(c),c)c∈CSR
M

is the unique solution so ξ
SR

is the unique allocation

in the alternative allocation problem R to satisfy Axioms 1-4; hence the proof is complete.

In the remainder of the proof, I show that the opposite case leads to a contradiction.

Towards a contradiction, suppose that the linear system of equations defined in (47)

has strictly fewer than |CSR
M | linearly independent equations. Then, there is at least one

degree of freedom; hence, arbitrarily fixing a category c ∈ CSR
M , for any value of ξ

∗
(a(c),c) there

exists a vector (ξ
∗
a(c′),c′)c′∈CSR

M \{c} such that (ξ
∗
a(c′),c′)c′∈CSR

M
is a solution to the linear system

of equations defined in (47).

Given an arbitrarily small positive number ε > 0, I construct an allocation ξ
ε

as follows.

Let ξ
ε

a(c),c = ξ
SR

a(c),c+ ε and, for every c′ ∈ CSR
M \{c}, let ξ

ε

a(c′),c′ be such that (ξ
ε

a(c′),c′)c′∈CSR
M

is a

solution to the system of equations defined in (47). Then, for every agent-category pair (a, c)

such that a ∈ ASRQ (c), let ξ
ε

a,c be determined by (41) and (42) and, for every agent-category

pair (a, c) such that a ∈ ASRU (c), let ξ
ε

a,c = 0 (as per (38)). By definition, for every c′ ∈ CSR
M ,

0 < ξ
SR

a(c′),c′ < da(c′)(ξ
SR

). As all equations in (41) and (47) are linear, there exists a value

ε > 0 small enough so that 0 < ξ
ε

a(c′),c′ < da(c′)(ξ
ε
) for every c′ ∈ CSR

M . Fixing such an ε, I

next show that ξ
ε

satisfies Axioms 1-4.

By definition, ξ
ε

a,c = 0 for every agent-category pair (a, c) such that a is not eligible for c

in the alternative problem R so ξ
ε

complies with eligibility requirements. I next introduce a

small result that is useful to prove that ξ
ε

satisfies the other three axioms. For every agent-

object pair (a, c) such that a ∈ ASRQ (c), by the definition ξ
ε

satisfies the first part of (41):

ξ
ε

a,c = da(ξ
ε
). I show that the second part of (41) also holds. If d

(
aξ
ε
) = 1, then ξ

ε

a,c = 1 so

ξ
ε

a = 1. If d
(
aξ
ε
) < 1, then by definition ξ

ε

a = 1. Therefore, we have that

ξ
ε

a = 1 for every (a, c) ∈ A× C such that ξ
SR

a,c = da(ξ
SR

). (48)

Suppose towards a contradiction that ξ
ε

is wasteful. Then, there exists an agent-category

pair (a, c) such that
∑

a′∈A ξ
ε

a′,c < qc, ξ
ε

a < 1, and a is eligible for c in R. By (47) the fact that∑
a′∈A ξ

ε

a′,c < qc implies that c /∈ CSR
M so ASRM (a) = ∅; hence it must be that either a ∈ ASRQ (c)

or a ∈ ASRU (c). If a ∈ ASRQ (c), then by (48), ξ
ε

a = 1, a contradiction. If a ∈ ASRU (c), then

by definition a is not eligible for c in R, a contradiction. It can then be concluded that ξ
ε

is non-wasteful. Next, suppose towards a contradiction that ξ
ε

does not respect priorities.

Then, there exists an agent-category pair (a, c) and a lower-priority agent a′ ∈ Ǎa,c such

that ξ
ε

a < 1 and ξ
ε

a′,c > 0. If a ∈ ASRQ (c), then (48) implies that ξ
ε

a = 1, a contradiction. If

61

a /∈ ASRQ (c), then by Claim 5, a′ ∈ ASRU (c) so, by (38), ξ
ε

a′,c = 0, a contradiction. It follows

that ξ
ε

respects priorities. Finally, suppose towards a contradiction that ξ
ε

does not respect

equal sharing. Then, there exists an agent-category pair (a, c) such that a is eligible for c in

R, ξ
ε

a,c < maxc′∈C{ξ
ε

a,c′}, and ξ
ε

a,c +
∑

a′∈Âa,c
ξ
ε

a′,c < qc. By definition, maxc′∈C{ξ
ε

a,c′} ≤ da(ξ
ε
),

which by (41) implies that a /∈ ASRQ (c). Moreover, the assumption that a is eligible for c in R

implies by definition that a /∈ ASRU (c) so it must be that a ∈ ASRM (c). In that case, however,

we have that ξ
ε

a,c+
∑

a′∈ASR
Q (c) ξ

ε

a′,c = qc by (47) and that ASRQ (c) = Âa,c by Claim 5. It follows

that ξ
ε

a,c +
∑

a′∈Âa,c
ξ
ε

a′,c = qc, a contradiction.

The preceding argument has established that there exists an allocation ξ
ε

in the alternative

rationing problem R that satisfies Axioms 1-4. By definition, there exists a category c ∈ CSR
M

such that ξ
ε

a(c),c = ξ
SR

a(c),c + ε > ξ
SR

a(c),c. Moreover, by construction, both ξ
ε

and ξ
SR

satisfy (46)

so we have that

ξ
ε

a(c),c +
∑

a′∈ASR
Q (c)

da′(ξ
ε
) = ξ

SR

a(c),c +
∑

a′∈ASR
Q (c)

da′(ξ
SR

) = qc.

Then, as ξ
ε

a(c),c > ξ
SR

a(c),c, there must exist an agent a′ ∈ ASRQ (c) such that da′(ξ
ε
) < da′(ξ

SR
),

which contradicts (37).

(xN = xN) Though not entirely analogous, the reasoning is this last part of the proof

is similar to that of the first part (which shows that ξSR = ξ
SR

). The main difference is

that I follow the SRLP algorithm instead of the SR algorithm. For the original rationing

problem R, I denote by xi, δi, and di the pre-allocation, the LP demand vector, and the

demand vector calculated by the SRLP algorithm in any given Round i. Similarly, for the

alternative rationing problem R, I denote by xi, δ
i
, and d

i
the pre-allocation, the LP demand

vector, and the demand vector calculated by the SRLP algorithm in any given Round i. I

also denote by d0 and d
0

the initial demand vectors in R and R, respectively.

By definition, we have that d0 = d
0

= δ1 = δ
1

= 1. Consider any Round i =

1, . . . ,min{N,N} of the SRLP algorithm and suppose, towards an inductive argument, that

δi = δ
i
. I show that xi = xi and, if i < min{N,N}, δi+1 = δ

i+1
. Arbitrarily fix an agent a

and a category c. I first show that xia,c = xia,c, considering separately the cases in which

ξSRa,c > 0 and ξSRa,c = 0.

Case 1 : ξSRa,c > 0. As ξSR complies with eligibility requirements, the case assump-

tion implies that a is eligible for c in the rationing problem R. By definition, the case

assumption also implies that a is eligible for c in the alternative rationing problem R.

Again by definition, it follows that xia,c = min{δia,max{qc −
∑

a′∈Âa,c
δia′ , 0}} and xia,c =

min{δia,max{qc −
∑

a′∈Âa,c
δ
i

a′ , 0}} so the induction hypothesis that δi = δ
i

implies that

62

xia,c = xia,c.

Case 2 : ξSRa,c = 0. By definition, the case assumption implies that a is not eligible for c

in the alternative rationing problem R; hence, xia,c = 0 and it remains to show that xia,c = 0.

If a is not eligible either in the alternative rationing problem R, it follows by definition that

xia,c = 0; therefore, for the remainder of the argument, I assume that a is eligible for c in R.

As xN = ξ
SR

= ξSR, (36) implies that∑
a′∈Âa,c

xNa′,c = qc. (49)

Consider any agent a′ ∈ Âa,c. By construction, xN is an allocation (otherwise the SRLP

algorithm would not end in Round N) so by definition da′(x
N) = maxc′∈C{xNa′,c′} if xNa = 1

and d(xN) = 1 if xNa < 1. It follows that d
N

a′ = da′(x
N) ≥ maxc′∈C{xNa′,c′} ≥ xNa′,c. As a′

was chosen arbitrarily, we have that d
N

a′ ≥ xNa′,c for every a′ ∈ Âa,c; hence (49) implies that∑
a′∈Âa,c

d
N

a′ ≥ qc. Then, by Lemma 19, we have that
∑

a′∈Âa,c
δ
i

a′ ≥ qc. As a is eligible for c,

it follows by definition that xia,c = min{δia,max{qc −
∑

a′∈Âa,c
δ
i

a′ , 0}} = 0.

As a and c were chosen arbitrarily, it has been established that xia,c = xia,c for every agent a

and every category c; hence we have that xi = xi. Then, by construction, it follows that

di = d
i
. Moreover, if i < min{N,N}, then by construction the fact that xi = xi and di = d

i

implies that δi+1 = δ
i+1

. By induction, it follows that xmin{N,N} = xmin{N,N} so it must be

that, in both rationing problems, the SRLP algorithm ends in the same Round N = N and

produces the same allocation xN = xN .

63

	Introduction
	Preliminaries
	Setup
	Rationing Problems in Practice
	Desirable properties for an allocation

	The Simultaneous Reserves (SR) allocation
	The Simultaneous Reserves (SR) algorithm
	Outcome of the SR algorithm
	Properties of the SR allocation

	Simultaneous Reserves with Linear Programming
	Conclusion
	Proofs
	Properties of the SR algorithm
	Proof of the results from Section 3
	Properties of the SRLP algorithm
	Proof of result.SRLP=SR.but.faster

